scholarly journals Biomarker records from core GH02-1030 off Tokachi in the northwestern Pacific over the last 23,000 years: Environmental changes during the last deglaciation

2009 ◽  
Vol 65 (6) ◽  
pp. 847-858 ◽  
Author(s):  
Masaki Inagaki ◽  
Masanobu Yamamoto ◽  
Yaeko Igarashi ◽  
Ken Ikehara
2017 ◽  
Vol 154 ◽  
pp. 33-43 ◽  
Author(s):  
Sunghan Kim ◽  
Boo-Keun Khim ◽  
Ken Ikehara ◽  
Takuya Itaki ◽  
Akihiko Shibahara ◽  
...  

2018 ◽  
Author(s):  
Amaëlle Landais ◽  
Emilie Capron ◽  
Valérie Masson-Delmotte ◽  
Samuel Toucanne ◽  
Rachael Rhodes ◽  
...  

Abstract. The last deglaciation represents the most recent example of natural global warming associated with large-scale climate changes. In addition to the long-term global temperature increase, the last deglaciation onset is punctuated by a sequence of abrupt changes in the Northern Hemisphere. Such interplay between orbital- and millennial-scale variability is widely documented in paleoclimatic records but the underlying mechanisms are not fully understood. Limitations arise from the difficulty in constraining the sequence of events between external forcing, high- and low- latitude climate and environmental changes. Greenland ice cores provide sub-decadal-scale records across the last deglaciation and contain fingerprints of climate variations occurring in different regions of the Northern Hemisphere. Here, we combine new ice d-excess and 17O-excess records, tracing changes in the mid-latitudes, with ice δ18O records of polar climate. Within Heinrich Stadial 1, we demonstrate a decoupling between climatic conditions in Greenland and those of the lower latitudes. While Greenland temperature remains mostly stable from 17.5 to 14.7 ka, significant change in the mid latitudes of northern Atlantic takes place at ~ 16.2 ka, associated with warmer and wetter conditions of Greenland moisture sources. We show that this climate modification is coincident with abrupt changes in atmospheric CO2 and CH4 concentrations recorded in an Antarctic ice core. Our coherent ice core chronological framework and comparison with other paleoclimate records suggests a mechanism involving two-step freshwater fluxes in the North Atlantic associated with a southward shift of the intertropical convergence zone.


2018 ◽  
Vol 14 (10) ◽  
pp. 1405-1415 ◽  
Author(s):  
Amaëlle Landais ◽  
Emilie Capron ◽  
Valérie Masson-Delmotte ◽  
Samuel Toucanne ◽  
Rachael Rhodes ◽  
...  

Abstract. The last deglaciation represents the most recent example of natural global warming associated with large-scale climate changes. In addition to the long-term global temperature increase, the last deglaciation onset is punctuated by a sequence of abrupt changes in the Northern Hemisphere. Such interplay between orbital- and millennial-scale variability is widely documented in paleoclimatic records but the underlying mechanisms are not fully understood. Limitations arise from the difficulty in constraining the sequence of events between external forcing, high- and low- latitude climate, and environmental changes. Greenland ice cores provide sub-decadal-scale records across the last deglaciation and contain fingerprints of climate variations occurring in different regions of the Northern Hemisphere. Here, we combine new ice d-excess and 17O-excess records, tracing changes in the midlatitudes, with ice δ18O records of polar climate. Within Heinrich Stadial 1, we demonstrate a decoupling between climatic conditions in Greenland and those of the lower latitudes. While Greenland temperature remains mostly stable from 17.5 to 14.7 ka, significant change in the midlatitudes of the northern Atlantic takes place at ∼16.2 ka, associated with warmer and wetter conditions of Greenland moisture sources. We show that this climate modification is coincident with abrupt changes in atmospheric CO2 and CH4 concentrations recorded in an Antarctic ice core. Our coherent ice core chronological framework and comparison with other paleoclimate records suggests a mechanism involving two-step freshwater fluxes in the North Atlantic associated with a southward shift of the Intertropical Convergence Zone.


Radiocarbon ◽  
2007 ◽  
Vol 49 (2) ◽  
pp. 963-968 ◽  
Author(s):  
Ken'ichi Ohkushi ◽  
Masao Uchida ◽  
Kaori Aoki ◽  
Minoru Yoneda ◽  
Ken Ikehara ◽  
...  

We measured radiocarbon ages of planktic foraminifera in 4 sediment cores from the northwestern Pacific region off northern Japan in order to estimate marine reservoir ages during the B⊘lling-Aller⊘d period. The ages of deglacial tephra markers from 2 Japanese source volcanoes identified in these sediment cores had been previously estimated from 14C ages of terrestrial charcoal and buried forests. By comparing the foraminiferal and tephra ages, we estimated the surface water reservoir age during the B⊘lling-Aller⊘d period to be ∼1000 yr or more in the region off northern Japan. The deglacial reservoir ages were more than 200 yr higher than the Holocene values of ∼800 yr. The older deglacial ages may have been caused by active upwelling of deep water during the last deglaciation and the consequent mixing of “older” deep water with “younger” surface waters.


2001 ◽  
Vol 20 (18) ◽  
pp. 1897-1914 ◽  
Author(s):  
Barbara Wohlfarth ◽  
Gina Hannon ◽  
Angelica Feurdean ◽  
Lucretia Ghergari ◽  
Bogdan P Onac ◽  
...  

2007 ◽  
Vol 5 ◽  
pp. 4-12 ◽  
Author(s):  
G. F. Camoin ◽  
Y. Iryu ◽  
D. B. McInroy ◽  

No abstract available. <br><br> doi:<a href="http://dx.doi.org/10.2204 /iodp.sd.5.01.2007" target="_blank">10.2204 /iodp.sd.5.01.2007</a>


Sign in / Sign up

Export Citation Format

Share Document