scholarly journals Relations between salinity in the northwestern Bering Sea, the Bering Strait throughflow and sea surface height in the Arctic Ocean

2017 ◽  
Vol 74 (3) ◽  
pp. 239-261 ◽  
Author(s):  
Yoshimi Kawai ◽  
Satoshi Osafune ◽  
Shuhei Masuda ◽  
Yoshiki Komuro
2012 ◽  
Vol 25 (4) ◽  
pp. 1079-1095 ◽  
Author(s):  
Z. Long ◽  
W. Perrie ◽  
C. L. Tang ◽  
E. Dunlap ◽  
J. Wang

Abstract The authors investigate the interannual variations of freshwater content (FWC) and sea surface height (SSH) in the Beaufort Sea, particularly their increases during 2004–09, using a coupled ice–ocean model (CIOM), adapted for the Arctic Ocean to simulate the interannual variations. The CIOM simulation exhibits a (relative) salinity minimum in the Beaufort Sea and a warm Atlantic water layer in the Arctic Ocean, which is similar to the Polar Hydrographic Climatology (PHC), and captures the observed FWC maximum in the central Beaufort Sea, and the observed variation and rapid decline of total ice concentration, over the last 30 years. The model simulations of SSH and FWC suggest a significant increase in the central Beaufort Sea during 2004–09. The simulated SSH increase is about 8 cm, while the FWC increase is about 2.5 m, with most of these increases occurring in the center of the Beaufort gyre. The authors show that these increases are due to an increased surface wind stress curl during 2004–09, which increased the FWC in the Beaufort Sea by about 0.63 m yr−1 through Ekman pumping. Moreover, the increased surface wind is related to the interannual variation of the Arctic polar vortex at 500 hPa. During 2004–09, the polar vortex had significant weakness, which enhanced the Beaufort Sea high by affecting the frequency of synoptic weather systems in the region. In addition to the impacts of the polar vortex, enhanced melting of sea ice also contributes to the FWC increase by about 0.3 m yr−1 during 2004–09.


2021 ◽  
Vol 13 (5) ◽  
pp. 831
Author(s):  
Jorge Vazquez-Cuervo ◽  
Chelle Gentemann ◽  
Wenqing Tang ◽  
Dustin Carroll ◽  
Hong Zhang ◽  
...  

The Arctic Ocean is one of the most important and challenging regions to observe—it experiences the largest changes from climate warming, and at the same time is one of the most difficult to sample because of sea ice and extreme cold temperatures. Two NASA-sponsored deployments of the Saildrone vehicle provided a unique opportunity for validating sea-surface salinity (SSS) derived from three separate products that use data from the Soil Moisture Active Passive (SMAP) satellite. To examine possible issues in resolving mesoscale-to-submesoscale variability, comparisons were also made with two versions of the Estimating the Circulation and Climate of the Ocean (ECCO) model (Carroll, D; Menmenlis, D; Zhang, H.). The results indicate that the three SMAP products resolve the runoff signal associated with the Yukon River, with high correlation between SMAP products and Saildrone SSS. Spectral slopes, overall, replicate the −2.0 slopes associated with mesoscale-submesoscale variability. Statistically significant spatial coherences exist for all products, with peaks close to 100 km. Based on these encouraging results, future research should focus on improving derivations of satellite-derived SSS in the Arctic Ocean and integrating model results to complement remote sensing observations.


1952 ◽  
Vol 17 (3) ◽  
pp. 261-262 ◽  
Author(s):  
Lawrence Krader

In the summer of 1947, Levoshin (1950) found a group of objects on a terrace of the Yakitikiveem River in the central part of the Chukchi (Chukotski) Peninsula (approximately 66° N., 175° W.), which forms the Asiatic shore of Bering Strait. These objects are as interesting for their typology as for their geographic location. The announcement of the find had been foreshadowed by Beregovaya (1948), where reference was made to an oral report by Okladnikov. In this report, Okladnikov had referred to a Neolithic station in the valley of the Amguema River in the Chukchi Peninsula. Shimkin (1949), in a recent review of Soviet anthropology, has made note of the discussion to that point. Now, the brief communication by Levoshin, and a further comment by Okladnikov (1950) himself help to bring the information on these finds up to date. It is almost certain that the Amguema Valley reference is the same as the Yakitikiveem River site reference. Yet, while existing maps show the Amguema River as emptying into the Arctic Ocean in the Chukchi Peninsula, the Yakitikiveem River is not reported on any known map or chart.


2021 ◽  
Vol 14 (1) ◽  
pp. 71
Author(s):  
Sarah B. Hall ◽  
Bulusu Subrahmanyam ◽  
James H. Morison

Salinity is the primary determinant of the Arctic Ocean’s density structure. Freshwater accumulation and distribution in the Arctic Ocean have varied significantly in recent decades and certainly in the Beaufort Gyre (BG). In this study, we analyze salinity variations in the BG region between 2012 and 2017. We use in situ salinity observations from the Seasonal Ice Zone Reconnaissance Surveys (SIZRS), CTD casts from the Beaufort Gyre Exploration Project (BGP), and the EN4 data to validate and compare with satellite observations from Soil Moisture Active Passive (SMAP), Soil Moisture and Ocean Salinity (SMOS), and Aquarius Optimally Interpolated Sea Surface Salinity (OISSS), and Arctic Ocean models: ECCO, MIZMAS, HYCOM, ORAS5, and GLORYS12. Overall, satellite observations are restricted to ice-free regions in the BG area, and models tend to overestimate sea surface salinity (SSS). Freshwater Content (FWC), an important component of the BG, is computed for EN4 and most models. ORAS5 provides the strongest positive SSS correlation coefficient (0.612) and lowest bias to in situ observations compared to the other products. ORAS5 subsurface salinity and FWC compare well with the EN4 data. Discrepancies between models and SIZRS data are highest in GLORYS12 and ECCO. These comparisons identify dissimilarities between salinity products and extend challenges to observations applicable to other areas of the Arctic Ocean.


Sign in / Sign up

Export Citation Format

Share Document