Liouvillian Integrability and the Poincaré Problem for Nonlinear Oscillators with Quadratic Damping and Polynomial Forces

Author(s):  
Maria V. Demina ◽  
Nikolai S. Kuznetsov
2020 ◽  
Vol 150 (6) ◽  
pp. 3231-3251 ◽  
Author(s):  
Maria V. Demina ◽  
Claudia Valls

AbstractWe present the complete classification of irreducible invariant algebraic curves of quadratic Liénard differential equations. We prove that these equations have irreducible invariant algebraic curves of unbounded degrees, in contrast with what is wrongly claimed in the literature. In addition, we classify all the quadratic Liénard differential equations that admit a Liouvillian first integral.


Author(s):  
Nguyen Cao Thang ◽  
Luu Xuan Hung

The paper presents a performance analysis of global-local mean square error criterion of stochastic linearization for some nonlinear oscillators. This criterion of stochastic linearization for nonlinear oscillators bases on dual conception to the local mean square error criterion (LOMSEC). The algorithm is generally built to multi degree of freedom (MDOF) nonlinear oscillators. Then, the performance analysis is carried out for two applications which comprise a rolling ship oscillation and two degree of freedom one. The improvement on accuracy of the proposed criterion has been shown in comparison with the conventional Gaussian equivalent linearization (GEL).


2021 ◽  
pp. 095745652199987
Author(s):  
Magaji Yunbunga Adamu ◽  
Peter Ogenyi

This study proposes a new modification of the homotopy perturbation method. A new parameter alpha is introduced into the homotopy equation in order to improve the results and accuracy. An optimal analysis identifies the parameter alpha, aimed at improving the solutions. A comparative analysis of the proposed method reveals that the new method presents results with higher degree of accuracy and precision than the classic homotopy perturbation method. Absolute error analysis shows the convenience of the proposed method, providing much smaller errors. Two examples are presented: Duffing and Van der pol’s nonlinear oscillators to demonstrate the efficiency, accuracy, and applicability of the new method.


2017 ◽  
Vol 95 (4) ◽  
Author(s):  
Francesco Alderisio ◽  
Gianfranco Fiore ◽  
Mario di Bernardo

1995 ◽  
Vol 50 (8) ◽  
pp. 718-726 ◽  
Author(s):  
Scott Rader ◽  
Diek W. Wheeler ◽  
W.C. Schieve ◽  
Pranab Das

Abstract Hübler's technique using aperiodic forces to drive nonlinear oscillators to resonance is analyzed. The oscillators being examined are effective neurons that model Hopfield neural networks. The method is shown to be valid under several different circumstances. It is verified through analysis of the power spectrum, force, resonance, and energy transfer of the system.


2019 ◽  
Vol 100 (2) ◽  
Author(s):  
Jung-Wan Ryu ◽  
Woo-Sik Son ◽  
Dong-Uk Hwang

2000 ◽  
Vol 84 (23) ◽  
pp. 5312-5315 ◽  
Author(s):  
R. Herrero ◽  
M. Figueras ◽  
J. Rius ◽  
F. Pi ◽  
G. Orriols

Sign in / Sign up

Export Citation Format

Share Document