Responses of Flea Beetle Phyllotreta cruciferae to Synthetic Aggregation Pheromone Components and Host Plant Volatiles in Field Trials

2005 ◽  
Vol 31 (8) ◽  
pp. 1829-1843 ◽  
Author(s):  
Juliana J. Soroka ◽  
Robert J. Bartelt ◽  
Bruce W. Zilkowski ◽  
Allard A. Cossé
Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2861
Author(s):  
José Manuel Pineda-Ríos ◽  
Juan Cibrián-Tovar ◽  
Luis Martín Hernández-Fuentes ◽  
Rosa María López-Romero ◽  
Lauro Soto-Rojas ◽  
...  

The Annonaceae fruits weevil (Optatus palmaris) causes high losses to the soursop production in Mexico. Damage occurs when larvae and adults feed on the fruits; however, there is limited research about control strategies against this pest. However, pheromones provide a high potential management scheme for this curculio. Thus, this research characterized the behavior and volatile production of O. palmaris in response to their feeding habits. Olfactometry assays established preference by weevils to volatiles produced by feeding males and soursop. The behavior observed suggests the presence of an aggregation pheromone and a kairomone. Subsequently, insect volatiles sampled by solid-phase microextraction and dynamic headspace detected a unique compound on feeding males increased especially when feeding. Feeding-starvation experiments showed an averaged fifteen-fold increase in the concentration of a monoterpenoid on males feeding on soursop, and a decrease of the release of this compound males stop feeding. GC-MS analysis of volatiles identified this compound as α-terpineol. Further olfactometry assays using α-terpineol and soursop, demonstrated that this combination is double attractive to Annonaceae weevils than only soursop volatiles. The results showed a complementation effect between α-terpineol and soursop volatiles. Thus, α-terpineol is the aggregation pheromone of O. palmaris, and its concentration is enhanced by host-plant volatiles.


2012 ◽  
Vol 42 (6) ◽  
pp. 1050-1059 ◽  
Author(s):  
Lawrence M. Hanks ◽  
Jocelyn G. Millar ◽  
Judith A. Mongold-Diers ◽  
Joseph C.H. Wong ◽  
Linnea R. Meier ◽  
...  

We evaluated the attraction of native species of cerambycid beetles to blends of cerambycid pheromones and the host plant volatiles ethanol and α-pinene to determine whether such blends could be effective lures for detecting and monitoring multiple species. The complete six-component blend of pheromones included racemic 3-hydroxy-2-hexanone, 2,3-hexanediol isomers, (E)-6,10-dimethyl-5,9-undecadien-2-ol and the corresponding acetate, 2-(undecyloxy)-ethanol, and racemic 2-methyl-1-butanol. Bioassays in east-central Illinois captured 3070 cerambycid beetles of 10 species, including four species in the subfamily Cerambycinae ( Neoclytus acuminatus (Fabricius, 1775), Neoclytus mucronatus (Fabricius, 1775), Phymatodes lengi Joutel, 1911, and Xylotrechus colonus (Fabricius, 1775)) and six species in the subfamily Laminiae ( Aegomorphus modestus (Gyllenhal in Schoenherr, 1817), Astyleiopus variegatus (Haldeman, 1847), Astylidius parvus (LeConte, 1873), Graphisurus fasciatus (DeGeer, 1775), Lepturges angulatus (LeConte, 1852), and Monochamus carolinensis (Olivier, 1792)). Beetles were attracted to their pheromone components within the blend, with inhibition only evident in one species. Host plant volatiles synergized attraction for some species, and synergism usually was attributed to ethanol, with α-pinene enhancing attraction only for the pine specialist M. carolinensis. The optimal strategy for targeting a broad range of cerambycid species would be to bait traps with a blend of several pheromones plus ethanol and α-pinene because synergism by these plant volatiles is critical for some species, whereas strong inhibition is uncommon.


2014 ◽  
Vol 147 (5) ◽  
pp. 564-579 ◽  
Author(s):  
Krista Ryall ◽  
Peter Silk ◽  
Reginald P. Webster ◽  
Jerzy M. Gutowski ◽  
Qingfan Meng ◽  
...  

AbstractMonochamol (2-undecyloxy-1-ethanol) is a male-produced aggregation pheromone for several Monochamus Dejean (Coleoptera: Cerambycidae) species. We conducted trapping experiments in Canada, Poland, and China to test whether monochamol was attractive to additional Monochamus species and if attraction was synergised by plant volatiles and bark beetle (Coleoptera: Curculionidae) pheromones. We provide the first evidence of attraction for M. urussovii (Fischer) and M. saltuarius (Gebler) to monochamol or monochamol+kairomones. The highest numbers of M. urussovii were captured in traps baited with monochamol+plant volatiles (Manuka oil, ethanol and (95/5±) α−pinene). Captures of M. saltuarius were highest in traps baited with monochamol, with the addition of cubeb oil tending to reduce captures. The highest numbers of M. scutellatus (Say) were captured in traps baited with monochamol+kairomones. A similar pattern in trap captures was found for M. notatus (Drury), M. marmorator Kirby, M. carolinensis (Olivier), and M. mutator LeConte. Detection rates, that is, proportion of traps capturing at least one specimen, was highest for traps baited with monochamol plus kairomones, particularly for less-common species. These results support the emerging hypothesis that pheromone compounds can attract related cerambycid species with cumulative evidence for attraction to monochamol for 12 species of Monochamus worldwide.


2012 ◽  
Vol 5 (1) ◽  
pp. 234 ◽  
Author(s):  
Vincent O Nyasembe ◽  
Peter E A Teal ◽  
Wolfgang R Mukabana ◽  
James H Tumlinson ◽  
Baldwyn Torto

2018 ◽  
Vol 166 (8) ◽  
pp. 673-682
Author(s):  
Ayaovi Agbessenou ◽  
Agbéko Kodjo Tounou ◽  
Elie Ayitondji Dannon ◽  
Benjamin Datinon ◽  
Cyriaque Agboton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document