MHD flow and heat transfer in a channel bounded by a shrinking sheet and a plate with a porous substrate

2011 ◽  
Vol 84 (5) ◽  
pp. 1034-1046 ◽  
Author(s):  
D. S. Chauhan ◽  
R. Agrawal
2014 ◽  
Vol 23 (4) ◽  
pp. 048203 ◽  
Author(s):  
Sadegh Khalili ◽  
Saeed Dinarvand ◽  
Reza Hosseini ◽  
Hossein Tamim ◽  
Ioan Pop

Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1162 ◽  
Author(s):  
Najiyah Safwa Khashi’ie ◽  
Norihan Md Arifin ◽  
Roslinda Nazar ◽  
Ezad Hafidz Hafidzuddin ◽  
Nadihah Wahi ◽  
...  

The present study accentuates the magnetohydrodynamics (MHD) flow and heat transfer characteristics of a dual stratified micropolar fluid over a permeable stretching/shrinking sheet. Thermal and solutal buoyancy forces are also included to incorporate with the stratification effect. Similarity, transformation is applied to reduce the governing model (partial differential equations) into a set of nonlinear ordinary differential equations (ODEs) due to its complexity. Using bvp4c solver in the MATLAB software, numerical results for some limiting cases are in favorable agreement with the earlier published results. Both assisting and opposing buoyancy flows have dual similarity solutions within specific range of suction and stretching/shrinking parameters, whereas only a distinctive solution is observed for pure forced convective flow. The micropolar fluid shows a disparate pattern of flow, heat and mass transfer characteristics between stretching and shrinking cases. Unlike the shrinking flow, the surface velocity gradient, local Nusselt and Sherwood numbers for stretching flow intensify with the increment of the material parameter. The result from stability analysis reveals that the first solution is the real solution, whereas the second solution is virtual.


2017 ◽  
Vol 55 (4) ◽  
pp. 1626-1636 ◽  
Author(s):  
Siti Khuzaimah Soid ◽  
Anuar Ishak ◽  
Ioan Pop

Author(s):  
Emad H. Aly ◽  
Ioan Pop

Purpose The purpose of this study is to present both effective analytic and numerical solutions to MHD flow and heat transfer past a permeable stretching/shrinking sheet in a hybrid nanofluid with suction/injection and convective boundary conditions. Water (base fluid) nanoparticles of alumina and copper were considered as a hybrid nanofluid. Design/methodology/approach Proper-similarity variables were applied to transform the system of partial differential equations into a system of ordinary (similarity) differential equations. Exact analytical solutions were then presented for the dimensionless stream and temperature functions. Further, the authors introduce a very nice analytic and numerical solutions for both small and large values of the magnetic parameter. Findings It was found that no/unique/two equal/dual physical solutions exist for the investigated boundary value problem. The physically realizable practice of these solutions depends on the range of the governing parameters. For a stretching/shrinking sheet, it was deduced that a hybrid nanofluid works as a cooler on increasing some of the investigated parameters. Moreover, in the case of a shrinking sheet, the first solutions of hybrid nanofluid are stable and physically realizable rather than the nanofluid, while those of the second solutions are not for both hybrid nanofluid and nanofluid. Originality/value The present results for the hybrid nanofluids are new and original, as they successfully extend (generalize) the problems previously considered by different authors for the case of nanofluids.


2015 ◽  
Author(s):  
Nazila Ishak ◽  
Hasmawani Hashim ◽  
Muhammad Khairul Anuar Mohamed ◽  
Norhafizah Md Sarif ◽  
Mohd Khaled ◽  
...  

2018 ◽  
Vol 49 (12) ◽  
pp. 1185-1198 ◽  
Author(s):  
Abid Hussanan ◽  
Mohd Zuki Salleh ◽  
Hamzeh Taha Alkasasbeh ◽  
Ilyas Khan

Sign in / Sign up

Export Citation Format

Share Document