A Highly Selective Naphthalimide-Based Chemosensor: “Naked-Eye” Colorimetric and Fluorescent Turn-On Recognition of Al3+ and Its Application in Practical Samples, Test Paper and Logic Gate

2017 ◽  
Vol 28 (1) ◽  
pp. 347-357 ◽  
Author(s):  
Na-Na Li ◽  
Shuang Zeng ◽  
Ming-Qiang Li ◽  
Yu-Qing Ma ◽  
Xue-Jiao Sun ◽  
...  
Keyword(s):  
2021 ◽  
Author(s):  
Hyungwook Kim ◽  
Young Jae Jung ◽  
Jungkyu K. Lee

We developed a novel strategy for signal amplification strategy using a visible light-induced photopolymerization, initiated by a selective turn-on photoredox catalyst. As photoredox catalysts, fluorescein derivatives are able to initiate...


2016 ◽  
Vol 237 ◽  
pp. 501-508 ◽  
Author(s):  
Yaming Liu ◽  
Jinyu Zhang ◽  
Jiaxi Ru ◽  
Xiang Yao ◽  
Yang Yang ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (81) ◽  
pp. 65731-65738 ◽  
Author(s):  
Divya Singhal ◽  
Neha Gupta ◽  
Ashok Kumar Singh

2-((3-Methylthiophen-2-yl)methyleneamino)benzenethiol (Probe 1) is selective for Hg2+. The binding affinity of Hg2+ with Probe 1 was confirmed by DFT and electrochemical behaviour. The limit of detection was 20 μM with 2 : 1 stoichiometry of 1 + Hg2+ complex.


Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 318 ◽  
Author(s):  
Hiroyuki Yamada ◽  
Naoto Shirahata

Here we report a quantum dot light emitting diode (QLED), in which a layer of colloidal silicon quantum dots (SiQDs) works as the optically active component, exhibiting a strong electroluminescence (EL) spectrum peaking at 620 nm. We could not see any fluctuation of the EL spectral peak, even in air, when the operation voltage varied in the range from 4 to 5 V because of the possible advantage of the inverted device structure. The pale-orange EL spectrum was as narrow as 95 nm. Interestingly, the EL spectrum was narrower than the corresponding photoluminescence (PL) spectrum. The EL emission was strong enough to be seen by the naked eye. The currently obtained brightness (∼4200 cd/m2), the 0.033% external quantum efficiency (EQE), and a turn-on voltage as low as 2.8 V show a sufficiently high performance when compared to other orange-light-emitting Si-QLEDs in the literature. We also observed a parasitic emission from the neighboring compositional layer (i.e., the zinc oxide layer), and its intensity increased with the driving voltage of the device.


2019 ◽  
Vol 495 ◽  
pp. 118962 ◽  
Author(s):  
Shuang Zeng ◽  
Shi-Jie Li ◽  
Ting-Ting Liu ◽  
Xue-Jiao Sun ◽  
Zhi-Yong Xing
Keyword(s):  

2020 ◽  
Vol 8 ◽  
Author(s):  
Yan Liu ◽  
Shuang Gao ◽  
Liu Yang ◽  
Yu-Long Liu ◽  
Xiao-Min Liang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document