The Effects of Hydrogen-Like Impurity and Temperature on State Energies and Transition Frequency of Strong-Coupling Bound Polaron in an Asymmetric Gaussian Potential Quantum Well

2018 ◽  
Vol 192 (1-2) ◽  
pp. 41-47 ◽  
Author(s):  
Jing-lin Xiao
2015 ◽  
Vol 29 (09) ◽  
pp. 1550058 ◽  
Author(s):  
R. Khordad

In the present work, we have studied the first internal excited state energy and transition frequency of strong-coupling impurity bound polaron in a quantum pseudodot using the well-known Lee–Low–Pines (LLP) unitary transformation method. We show the effect of Coulomb bound potential, electron–phonon (e–p) coupling strength, the quantum dot radius and potential height on first internal excited state energy and the transition frequency of the impurity bound polaron. According to the results, it is found that the first internal excited state energy is decreased with increasing quantum dot radius. Also, this energy is increased with enhancing potential height. The transition frequency is increased with increasing the e–p coupling strength. Also, the first internal excited state energy is increased with decreasing the e–p coupling strength. The transition frequency is enhanced with increasing the Coulomb bound potential.


2020 ◽  
Vol 34 (12) ◽  
pp. 2050114
Author(s):  
Xiu-Juan Miao ◽  
Yong Sun ◽  
Jing-Lin Xiao

The influences of temperature and cyclotron frequency of a magnetic field on the ground state energy and mean number of phonons (MNP) of strong-coupling magnetopolarons in an asymmetric Gaussian potential quantum well(AGPQW) are researched by employing the linear-combination operator method and the unitary transformation. It was demonstrated through the numerical calculations that the ground state energy and the MNP increase with higher magnetic field cyclotron frequencies and temperature. In addition, increasing of the barrier of asymmetric Gaussian potential (AGP) causes the ground state energy to decrease while increasing the MNP of magnetopolarons.


2021 ◽  
pp. 2150273
Author(s):  
Saren Gaowa ◽  
Xiu-Juan Miao ◽  
Jing-Lin Xiao ◽  
Cui-Lan Zhao

This paper utilized the methods of linear combination and unitary transformation to evaluate the vibrational frequency (VF) and ground state binding energy (GSBE) of a strong-coupling magnetopolaron in an asymmetrical Gaussian potential quantum well (AGPQW), and the effects of the temperature on these physical quantities were studied through quantum statistical theory. The changes of the VF and GSBE versus temperature and cyclotron frequency (CF) in a magnetic field were discussed. The numerical calculations revealed that with the increase of temperature, the VF and GSBE also increased. Meanwhile, the numerical results show that the VF increases with the increase of the CF. However, the GSBE versus the CF has different changing properties.


2012 ◽  
Vol 11 (03) ◽  
pp. 1250026 ◽  
Author(s):  
CHENG-SHUN WANG ◽  
YU-FANG CHEN ◽  
JING-JIN XIAO

Properties of the excited state of strong-coupling impurity bound polaron in an asymmetric quantum dot are studied by using linear combination operator and unitary transformation methods. The first internal excited state energy, the excitation energy and the transition frequency between the first internal excited and the ground states of the impurity bound polaron as functions of the transverse and the longitudinal effective confinement lengths of the dot, the electron–phonon coupling strength and the Coulomb bound potential were derived. Our numerical results show that they will increase with decreasing the effective confinement lengths, due to interesting quantum size confining effects. But they are an increasing functions of the Coulomb bound potential. The first internal excited state energy is a decreasing function of the electron–phonon coupling strength whereas the transition frequency and the excitation energy are an increasing one of the electron–phonon coupling strength.


Sign in / Sign up

Export Citation Format

Share Document