A Study of Curved Boundary Representations for 2D High Order Euler Solvers

2010 ◽  
Vol 44 (3) ◽  
pp. 323-336 ◽  
Author(s):  
Haiyang Gao ◽  
Z. J. Wang ◽  
Yen Liu
Author(s):  
André Ribeiro de Barros Aguiar ◽  
Fábio Mallaco Moreira ◽  
Eduardo Jourdan ◽  
João Luiz F. Azevedo

2003 ◽  
Vol 3 (1) ◽  
pp. 135-158 ◽  
Author(s):  
P. W. Hemker ◽  
W. Hoffman ◽  
M. H. Van Raalte

AbstractThe purpose of this paper is to introduce discretization methods of discontinuous Galerkin type for solving second-order elliptic PDEs on a structured, regular rectangular grid, while the problem is defined on a curved boundary. The methods aim at high-order accuracy and the difficulty arises since the regular grid cannot follow the curved boundary. Starting with the Lagrange multiplier formulation for the boundary conditions, we derive variational forms for the discretization of 2-D elliptic problems with embedded Dirichlet boundary conditions. Within the framework of structured, regular rectangular grids, we treat curved boundaries according to the principles that underlie the discontinuous Galerkin method. Thus, the high-order DGdiscretization is adapted in cells with embedded boundaries. We give examples of approximation with tensor products of cubic polynomials. As an illustration, we solve a convection-dominated boundary-value problem on a complex domain. Although, of course, it is impossible to accurately represent a boundary layer with a complex structure by means of cubic polynomials, the boundary condition treatment appears quite effective in handling such complex situations.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Miao Cui ◽  
Wei-zhe Feng ◽  
Xiao-wei Gao ◽  
Kai Yang

Boundary element method (BEM) is a very promising approach for solving various engineering problems, in which accurate evaluation of boundary integrals is required. In the present work, the direct method for evaluating singular curved boundary integrals is developed by considering the third-order derivatives in the projection plane method when expanding the geometry quantities at the field point as Taylor series. New analytical formulas are derived for geometry quantities defined on the curved line/plane, and unified expressions are obtained for both two-dimensional and three-dimensional problems. For the two-dimensional boundary integrals, analytical expressions for the third-order derivatives are derived and are employed to verify the complex-variable-differentiation method (CVDM) which is used to evaluate the high order derivatives for three-dimensional problems. A few numerical examples are given to show the effectiveness and the accuracy of the present method.


Author(s):  
Y. Ishida ◽  
H. Ishida ◽  
K. Kohra ◽  
H. Ichinose

IntroductionA simple and accurate technique to determine the Burgers vector of a dislocation has become feasible with the advent of HVEM. The conventional image vanishing technique(1) using Bragg conditions with the diffraction vector perpendicular to the Burgers vector suffers from various drawbacks; The dislocation image appears even when the g.b = 0 criterion is satisfied, if the edge component of the dislocation is large. On the other hand, the image disappears for certain high order diffractions even when g.b ≠ 0. Furthermore, the determination of the magnitude of the Burgers vector is not easy with the criterion. Recent image simulation technique is free from the ambiguities but require too many parameters for the computation. The weak-beam “fringe counting” technique investigated in the present study is immune from the problems. Even the magnitude of the Burgers vector is determined from the number of the terminating thickness fringes at the exit of the dislocation in wedge shaped foil surfaces.


Sign in / Sign up

Export Citation Format

Share Document