An Efficient High-Order Time Integration Method for Spectral-Element Discontinuous Galerkin Simulations in Electromagnetics

2013 ◽  
Vol 57 (3) ◽  
pp. 582-603 ◽  
Author(s):  
Misun Min ◽  
Paul Fischer
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Mina Torabi ◽  
Manuel Pastor ◽  
Miguel Martín Stickle

An accurate, stable, and efficient three-step predictor-corrector time integration method is considered, for the first time, to obtain numerical solution for the one-dimensional consolidation equation within a finite and spectral element framework. Theoretical order of accuracy and stability conditions are provided. The three-step predictor-corrector time integration method is third-order accurate and shows a larger stability region than the forward Euler method when applied to the one-dimensional consolidation equation. Furthermore, numerical results are in agreement with analytical solutions previously derived by the authors.


2021 ◽  
Vol 11 (4) ◽  
pp. 1932
Author(s):  
Weixuan Wang ◽  
Qinyan Xing ◽  
Qinghao Yang

Based on the newly proposed generalized Galerkin weak form (GGW) method, a two-step time integration method with controllable numerical dissipation is presented. In the first sub-step, the GGW method is used, and in the second sub-step, a new parameter is introduced by using the idea of a trapezoidal integral. According to the numerical analysis, it can be concluded that this method is unconditionally stable and its numerical damping is controllable with the change in introduced parameters. Compared with the GGW method, this two-step scheme avoids the fast numerical dissipation in a low-frequency range. To highlight the performance of the proposed method, some numerical problems are presented and illustrated which show that this method possesses superior accuracy, stability and efficiency compared with conventional trapezoidal rule, the Wilson method, and the Bathe method. High accuracy in a low-frequency range and controllable numerical dissipation in a high-frequency range are both the merits of the method.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
A. Ghidoni ◽  
A. Colombo ◽  
S. Rebay ◽  
F. Bassi

In the last decade, discontinuous Galerkin (DG) methods have been the subject of extensive research efforts because of their excellent performance in the high-order accurate discretization of advection-diffusion problems on general unstructured grids, and are nowadays finding use in several different applications. In this paper, the potential offered by a high-order accurate DG space discretization method with implicit time integration for the solution of the Reynolds-averaged Navier–Stokes equations coupled with the k-ω turbulence model is investigated in the numerical simulation of the turbulent flow through the well-known T106A turbine cascade. The numerical results demonstrate that, by exploiting high order accurate DG schemes, it is possible to compute accurate simulations of this flow on very coarse grids, with both the high-Reynolds and low-Reynolds number versions of the k-ω turbulence model.


Sign in / Sign up

Export Citation Format

Share Document