scholarly journals On the Asymptotic Linear Convergence Speed of Anderson Acceleration Applied to ADMM

2021 ◽  
Vol 88 (2) ◽  
Author(s):  
Dawei Wang ◽  
Yunhui He ◽  
Hans De Sterck
2021 ◽  
Vol 26 (1) ◽  
pp. 15
Author(s):  
Marie-Sophie Hartig

It is common practice in science and engineering to approximate smooth surfaces and their geometric properties by using triangle meshes with vertices on the surface. Here, we study the approximation of the Gaussian curvature through the Gauss–Bonnet scheme. In this scheme, the Gaussian curvature at a vertex on the surface is approximated by the quotient of the angular defect and the area of the Voronoi region. The Voronoi region is the subset of the mesh that contains all points that are closer to the vertex than to any other vertex. Numerical error analyses suggest that the Gauss–Bonnet scheme always converges with quadratic convergence speed. However, the general validity of this conclusion remains uncertain. We perform an analytical error analysis on the Gauss–Bonnet scheme. Under certain conditions on the mesh, we derive the convergence speed of the Gauss–Bonnet scheme as a function of the maximal distance between the vertices. We show that the conditions are sufficient and necessary for a linear convergence speed. For the special case of locally spherical surfaces, we find a better convergence speed under weaker conditions. Furthermore, our analysis shows that the Gauss–Bonnet scheme, while generally efficient and effective, can give erroneous results in some specific cases.


2019 ◽  
Vol 67 (6) ◽  
pp. 405-414 ◽  
Author(s):  
Ningning Liu ◽  
Yuedong Sun ◽  
Yansong Wang ◽  
Hui Guo ◽  
Bin Gao ◽  
...  

Active noise control (ANC) is used to reduce undesirable noise, particularly at low frequencies. There are many algorithms based on the least mean square (LMS) algorithm, such as the filtered-x LMS (FxLMS) algorithm, which have been widely used for ANC systems. However, the LMS algorithm cannot balance convergence speed and steady-state error due to the fixed step size and tap length. Accordingly, in this article, two improved LMS algorithms, namely, the iterative variable step-size LMS (IVS-LMS) and the variable tap-length LMS (VT-LMS), are proposed for active vehicle interior noise control. The interior noises of a sample vehicle are measured and thereby their frequency characteristics. Results show that the sound energy of noise is concentrated within a low-frequency range below 1000 Hz. The classical LMS, IVS-LMS and VT-LMS algorithms are applied to the measured noise signals. Results further suggest that the IVS-LMS and VT-LMS algorithms can better improve algorithmic performance for convergence speed and steady-state error compared with the classical LMS. The proposed algorithms could potentially be incorporated into other LMS-based algorithms (like the FxLMS) used in ANC systems for improving the ride comfort of a vehicle.


Author(s):  
Héctor Botero ◽  
Hernán Álvarez

This paper proposes a new composite observer capable of estimating the states and unknown (or changing) parameters of a chemical process, using some input-output measurements, the phenomenological based model and other available knowledge about the process. The proposed composite observer contains a classic observer (CO) to estimate the state variables, an observer-based estimator (OBE) to obtain the actual values of the unknown or changing parameters needed to tune the CO, and an asymptotic observer (AO) to estimate the states needed as input to the OBE. The proposed structure was applied to a CSTR model with three state variables. With the proposed structure, the concentration of reactants and other CSTR parameters can be estimated on-line if the reactor and jacket temperatures are known. The procedure for the design of the proposed structure is simple and guarantees observer convergence. In addition, the convergence speed of state and parameter estimation can be adjusted independently.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Shijie Sun ◽  
Meiling Feng ◽  
Luoyi Shi

Abstract This paper considers an iterative algorithm of solving the multiple-sets split equality problem (MSSEP) whose step size is independent of the norm of the related operators, and investigates its sublinear and linear convergence rate. In particular, we present a notion of bounded Hölder regularity property for the MSSEP, which is a generalization of the well-known concept of bounded linear regularity property, and give several sufficient conditions to ensure it. Then we use this property to conclude the sublinear and linear convergence rate of the algorithm. In the end, some numerical experiments are provided to verify the validity of our consequences.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Akram Khodadadi ◽  
Shahram Saeidi

AbstractThe k-clique problem is identifying the largest complete subgraph of size k on a network, and it has many applications in Social Network Analysis (SNA), coding theory, geometry, etc. Due to the NP-Complete nature of the problem, the meta-heuristic approaches have raised the interest of the researchers and some algorithms are developed. In this paper, a new algorithm based on the Bat optimization approach is developed for finding the maximum k-clique on a social network to increase the convergence speed and evaluation criteria such as Precision, Recall, and F1-score. The proposed algorithm is simulated in Matlab® software over Dolphin social network and DIMACS dataset for k = 3, 4, 5. The computational results show that the convergence speed on the former dataset is increased in comparison with the Genetic Algorithm (GA) and Ant Colony Optimization (ACO) approaches. Besides, the evaluation criteria are also modified on the latter dataset and the F1-score is obtained as 100% for k = 5.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 598
Author(s):  
Lin Wang ◽  
Ronghua Shi ◽  
Jian Dong

The dragonfly algorithm (DA) is a new intelligent algorithm based on the theory of dragonfly foraging and evading predators. DA exhibits excellent performance in solving multimodal continuous functions and engineering problems. To make this algorithm work in the binary space, this paper introduces an angle modulation mechanism on DA (called AMDA) to generate bit strings, that is, to give alternative solutions to binary problems, and uses DA to optimize the coefficients of the trigonometric function. Further, to improve the algorithm stability and convergence speed, an improved AMDA, called IAMDA, is proposed by adding one more coefficient to adjust the vertical displacement of the cosine part of the original generating function. To test the performance of IAMDA and AMDA, 12 zero-one knapsack problems are considered along with 13 classic benchmark functions. Experimental results prove that IAMDA has a superior convergence speed and solution quality as compared to other algorithms.


Sign in / Sign up

Export Citation Format

Share Document