A midge-salinity transfer function for inferring sea level change and landscape evolution in the Hudson Bay Lowlands, Manitoba, Canada

2013 ◽  
Vol 51 (3) ◽  
pp. 325-341 ◽  
Author(s):  
Trapper R. Dickson ◽  
Darren G. Bos ◽  
Marlow G. Pellatt ◽  
Ian R. Walker
Author(s):  
Robin J Edwards ◽  
B.P Horton

This paper provides a brief overview of the transfer function approach to sea-level reconstruction. Using the example of two overlapping sediment cores from the North Norfolk coast, UK, the advantages and limitations of the transfer function methodology are examined. While the selected cores are taken from different sites, and display contrasting patterns of sedimentation, the foraminiferal transfer function distils comparable records of relative sea-level change from both sequences. These reconstructions are consistent with existing sea-level index points from the region but produce a more detailed record of relative sea-level change. Transfer functions can extract sea-level information from a wider range of sedimentary sub-environments. This increases the amount of data that can be collected from coastal deposits and improves record resolution. The replicability of the transfer function methodology, coupled with the sequential nature of the data it produces, assists in the compilation and analysis of sea-level records from different sites. This technique has the potential to bridge the gap between short-term (instrumental) and long-term (geological or geophysical) records of sea-level change.


The Holocene ◽  
2018 ◽  
Vol 28 (9) ◽  
pp. 1411-1430 ◽  
Author(s):  
Craig R Sloss ◽  
Luke Nothdurft ◽  
Quan Hua ◽  
Shoshannah G O’Connor ◽  
Patrick T Moss ◽  
...  

A revised Holocene sea-level history for the southern Gulf of Carpentaria is presented based on new data from the South Wellesley Archipelago and age recalibration of previous research. Results confirm that rising sea levels during the most recent post-glacial marine transgression breached the Arafura Sill ca. 11,700 cal. yr BP. Sea levels continued to rise to ca. –30 m by 10,000 cal. yr BP, leading to full marine conditions. By 7700 cal. yr BP, sea-level reached present mean sea-level (PMSL) and continued to rise to an elevation of between 1.5 m and 2 m above PMSL. Sea level remained ca. + 1.5 between 7000 and 4000 cal. yr BP, followed by rapid regression to within ± 0.5 m of PMSL by ca. 3500 cal. yr BP. When placed into a wider regional context results from this study show that coastal landscape evolution in the tropical north of Australia was not only dependent on sea-level change but also show a direct correlation with Holocene climate variability. Specifically, the formation and preservation of beach-rock deposits, intertidal successions, beach and chenier ridge systems hold valuable sea-level and Holocene climate proxies that can contribute to the growing research into lower latitude Holocene sea-level and climate histories.


The Holocene ◽  
2007 ◽  
Vol 17 (5) ◽  
pp. 639-648 ◽  
Author(s):  
Thomas C.B. Hill ◽  
Wendy A. Woodland ◽  
Chris D. Spencer ◽  
Susan B. Marriott

2015 ◽  
Vol 59 (2) ◽  
pp. 145-172 ◽  
Author(s):  
Marta Pappalardo ◽  
Marina Aguirre ◽  
Monica Bini ◽  
Ilaria Consoloni ◽  
Enrique Fucks ◽  
...  

Author(s):  
Donald Eugene Canfield

This chapter discusses the modeling of the history of atmospheric oxygen. The most recently deposited sediments will also be the most prone to weathering through processes like sea-level change or uplift of the land. Thus, through rapid recycling, high rates of oxygen production through the burial of organic-rich sediments will quickly lead to high rates of oxygen consumption through the exposure of these organic-rich sediments to weathering. From a modeling perspective, rapid recycling helps to dampen oxygen changes. This is important because the fluxes of oxygen through the atmosphere during organic carbon and pyrite burial, and by weathering, are huge compared to the relatively small amounts of oxygen in the atmosphere. Thus, all of the oxygen in the present atmosphere is cycled through geologic processes of oxygen liberation (organic carbon and pyrite burial) and consumption (weathering) on a time scale of about 2 to 3 million years.


Sign in / Sign up

Export Citation Format

Share Document