Direct synthesis of Zn-incorporated nano-ZSM-5 zeolite by a dry gel conversion method for improving catalytic performance of methanol to aromatics reaction

Author(s):  
Youhe Wang ◽  
Jingwei Xu ◽  
Zhihong Li ◽  
Shuai Guan ◽  
Yuyang Zeng ◽  
...  
2017 ◽  
Vol 41 (6) ◽  
pp. 2235-2240 ◽  
Author(s):  
Koji Miyake ◽  
Yuichiro Hirota ◽  
Kaito Ono ◽  
Yoshiaki Uchida ◽  
Manabu Miyamoto ◽  
...  

Fe-MFI nanocrystals were synthesized by a dry gel conversion method and showed superior catalytic performance in methanol to olefin reactions.


CrystEngComm ◽  
2021 ◽  
Vol 23 (15) ◽  
pp. 2793-2800
Author(s):  
Xueshuai Chen ◽  
Rongli Jiang ◽  
Yu Gao ◽  
Zihan Zhou ◽  
Xingwen Wang

Nano-sized ZSM-5 with superior catalytic properties was synthesized from LAPONITE® as one of the Si sources by a dry gel conversion method.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Byung Chul Yeo ◽  
Hyunji Nam ◽  
Hyobin Nam ◽  
Min-Cheol Kim ◽  
Hong Woo Lee ◽  
...  

AbstractTo accelerate the discovery of materials through computations and experiments, a well-established protocol closely bridging these methods is required. We introduce a high-throughput screening protocol for the discovery of bimetallic catalysts that replace palladium (Pd), where the similarities in the electronic density of states patterns were employed as a screening descriptor. Using first-principles calculations, we screened 4350 bimetallic alloy structures and proposed eight candidates expected to have catalytic performance comparable to that of Pd. Our experiments demonstrate that four bimetallic catalysts indeed exhibit catalytic properties comparable to those of Pd. Moreover, we discover a bimetallic (Ni-Pt) catalyst that has not yet been reported for H2O2 direct synthesis. In particular, Ni61Pt39 outperforms the prototypical Pd catalyst for the chemical reaction and exhibits a 9.5-fold enhancement in cost-normalized productivity. This protocol provides an opportunity for the catalyst discovery for the replacement or reduction in the use of the platinum-group metals.


2012 ◽  
Vol 20 (3) ◽  
pp. 539-546 ◽  
Author(s):  
Xiucheng Zheng ◽  
Beibei Dong ◽  
Chengyuan Yuan ◽  
Ke Zhang ◽  
Xiangyu Wang

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmad Asghari ◽  
Mohammadreza Khanmohammadi Khorrami ◽  
Sayed Habib Kazemi

AbstractThe present work introduces a good prospect for the development of hierarchical catalysts with excellent catalytic performance in the methanol to aromatic hydrocarbons conversion (MTA) process. Hierarchical H-ZSM5 zeolites, with a tailored pore size and different Si/Al ratios, were synthesized directly using natural kaolin clay as a low-cost silica and aluminium resource. Further explored for the direct synthesis of hierarchical HZSM-5 structures was the steam assisted conversion (SAC) with a cost-effective and green affordable saccharide source of high fructose corn syrup (HFCS), as a secondary mesopore agent. The fabricated zeolites exhibiting good crystallinity, 2D and 3D nanostructures, high specific surface area, tailored pore size, and tunable acidity. Finally, the catalyst performance in the conversion of methanol to aromatic hydrocarbons was tested in a fixed bed reactor. The synthesized H-ZSM5 catalysts exhibited superior methanol conversion (over 100 h up to 90%) and selectivity (over 85%) in the methanol conversion to aromatic hydrocarbon products.


Sign in / Sign up

Export Citation Format

Share Document