Direct synthesis, characterization and catalytic performance of Al-SBA-15 mesoporous catalysts with varying Si/Al molar ratios

2012 ◽  
Vol 20 (3) ◽  
pp. 539-546 ◽  
Author(s):  
Xiucheng Zheng ◽  
Beibei Dong ◽  
Chengyuan Yuan ◽  
Ke Zhang ◽  
Xiangyu Wang
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Byung Chul Yeo ◽  
Hyunji Nam ◽  
Hyobin Nam ◽  
Min-Cheol Kim ◽  
Hong Woo Lee ◽  
...  

AbstractTo accelerate the discovery of materials through computations and experiments, a well-established protocol closely bridging these methods is required. We introduce a high-throughput screening protocol for the discovery of bimetallic catalysts that replace palladium (Pd), where the similarities in the electronic density of states patterns were employed as a screening descriptor. Using first-principles calculations, we screened 4350 bimetallic alloy structures and proposed eight candidates expected to have catalytic performance comparable to that of Pd. Our experiments demonstrate that four bimetallic catalysts indeed exhibit catalytic properties comparable to those of Pd. Moreover, we discover a bimetallic (Ni-Pt) catalyst that has not yet been reported for H2O2 direct synthesis. In particular, Ni61Pt39 outperforms the prototypical Pd catalyst for the chemical reaction and exhibits a 9.5-fold enhancement in cost-normalized productivity. This protocol provides an opportunity for the catalyst discovery for the replacement or reduction in the use of the platinum-group metals.


Author(s):  
Wei Deng ◽  
Biao Gao ◽  
Ziye Jia ◽  
Dongqi Liu ◽  
Limin Guo

Co-Cr bimetallic oxide with different Co/Cr molar ratios were prepared through a layered double hydroxides (LDHs) derived method. Their physicochemical properties together with catalytic performance for chlorinated aromatics (1, 2-dichlorobenzene...


2020 ◽  
Vol 15 (2) ◽  
pp. 490-500
Author(s):  
Neha Neha ◽  
Ram Prasad ◽  
Satya Vir Singh

A series of nickel-cobalt bimetal oxides in varying molar ratios and its single metal oxides were synthesized by reactive calcination of coprecipitated basic-carbonates. Several characterization techniques, such as: Bruneuer Emmett Teller (BET), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infra Red (FTIR), and Hydrogen Temperature Programmed Reduction (H2-TPR), were performed over the oxides. Activities of oxides were evaluated in methane total oxidation in the presence or the absence of CO. The best catalytic performance was observed over NiCo catalyst with a Ni/Co molar ratio of 1:1, and the complete conversion of CO-CH4 mixture was achieved at 390 °C. Moreover, the presence of carbon monoxide improves CH4 total oxidation over nickel-cobalt mixed oxides. Structural analysis reveals that the insertion of nickel into the spinel lattice of cobalt oxide causes the structural disorder, which probably caused the increase of the amount of octahedrally coordinated divalent nickel cations that are responsible for catalytic activity. Stability of the best-performed catalyst has been tested in the two conditions, showing remarkable long-term stability and thermal stability, however, showed deactivation after thermally ageing at 700 °C. Copyright © 2020 BCREC Group. All rights reserved 


RSC Advances ◽  
2017 ◽  
Vol 7 (55) ◽  
pp. 34497-34507 ◽  
Author(s):  
Tahereh Taherzadeh Lari ◽  
Ali Akbar Mirzaei ◽  
Hossein Atashi

The effect of Co/Ce molar ratios on the catalytic performance in FTS.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmad Asghari ◽  
Mohammadreza Khanmohammadi Khorrami ◽  
Sayed Habib Kazemi

AbstractThe present work introduces a good prospect for the development of hierarchical catalysts with excellent catalytic performance in the methanol to aromatic hydrocarbons conversion (MTA) process. Hierarchical H-ZSM5 zeolites, with a tailored pore size and different Si/Al ratios, were synthesized directly using natural kaolin clay as a low-cost silica and aluminium resource. Further explored for the direct synthesis of hierarchical HZSM-5 structures was the steam assisted conversion (SAC) with a cost-effective and green affordable saccharide source of high fructose corn syrup (HFCS), as a secondary mesopore agent. The fabricated zeolites exhibiting good crystallinity, 2D and 3D nanostructures, high specific surface area, tailored pore size, and tunable acidity. Finally, the catalyst performance in the conversion of methanol to aromatic hydrocarbons was tested in a fixed bed reactor. The synthesized H-ZSM5 catalysts exhibited superior methanol conversion (over 100 h up to 90%) and selectivity (over 85%) in the methanol conversion to aromatic hydrocarbon products.


2018 ◽  
Vol 42 (13) ◽  
pp. 10861-10867 ◽  
Author(s):  
Junling Tu ◽  
Jiaojiao Yuan ◽  
Shimin Kang ◽  
Yongjun Xu ◽  
Tiejun Wang

Fe3O4@C nanoparticles with tunable size exhibit excellent catalytic performance in the direct synthesis of gasoline fuels.


Author(s):  
Khaled Alshammari ◽  
Yubiao Niu ◽  
Richard E. Palmer ◽  
Nikolaos Dimitratos

A sol-immobilization method is used to synthesize a series of highly active and stable Au x Pd 1− x /TiO 2 catalysts (where x  = 0, 0.13, 0.25, 0.5, 0.75, 0.87 and 1) for wastewater remediation. The catalytic performance of the materials was evaluated for the catalytic reduction of 4-nitrophenol, a model wastewater contaminant, using NaBH 4 as the reducing agent under mild reaction conditions. Reaction parameters such as substrate/metal and substrate/reducing agent molar ratios, reaction temperature and stirring rate were investigated. Structure-activity correlations were studied using a number of complementary techniques including X-ray powder diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. The sol-immobilization route provides very small Au–Pd alloyed nanoparticles, with the highest catalytic performance shown by the Au 0.5 Pd 0.5 /TiO 2 catalyst. This article is part of a discussion meeting issue ‘Science to enable the circular economy’.


Sign in / Sign up

Export Citation Format

Share Document