scholarly journals Correction to: Simulation of finite fault hybrid source models for the Mw 6.6 Jiuzhaigou, China, earthquake

2020 ◽  
Vol 24 (6) ◽  
pp. 1267-1269
Author(s):  
Pengfei Dang ◽  
Qifang Liu ◽  
Linjian Ji ◽  
Chong Wang
2020 ◽  
Vol 24 (6) ◽  
pp. 1255-1265
Author(s):  
Pengfei Dang ◽  
Qifang Liu ◽  
Linjian Ji ◽  
Chong Wang

2020 ◽  
Vol 222 (2) ◽  
pp. 1390-1404
Author(s):  
Leonardo Ramirez-Guzman ◽  
Stephen Hartzell

SUMMARY We present a source inversion of the 2008 Wenchuan, China earthquake, using strong-motion waveforms and geodetic offsets together with 3-D synthetic ground motions. We applied the linear multiple time window technique considering geodetic and dynamic Green's functions computed with the finite-element method and the reciprocity and Strain Green's Tensor formalism. All ground motion estimates, valid up to 1 Hz, accounted for 3-D effects, including the topography and the geometry of the Beichuan and Pengguan faults. Our joint inversion has a higher moment (M0) than a purely geodetic inversion and the slip distribution presents differences when compared to 1-D model source inversions. The moment is estimated to be M0 = 1.2 × 1021 N·m, slightly larger than other works. Our results show that considering a complex 3-D structure reduces the size of large areas of 10 m slip or greater by distributing it in wider zones, with reduced slips, in the central portion of the Beichuan and the Pengguan faults. Finally, we compare our source with a relocated aftershock catalogue and conclude that the 4–5 m slip contours approximately bound the absence or presence of aftershocks.


2010 ◽  
Vol 100 (5B) ◽  
pp. 2476-2490 ◽  
Author(s):  
H. Ghasemi ◽  
Y. Fukushima ◽  
K. Koketsu ◽  
H. Miyake ◽  
Z. Wang ◽  
...  

2013 ◽  
Vol 353-356 ◽  
pp. 1923-1929 ◽  
Author(s):  
Xia Xin Tao ◽  
Hai Ming Liu ◽  
Li Yuan Wang ◽  
Jiang Wei

In order to study the characteristics of ground motions at the two dam sites damaged during the great Wenchuan earthquake in 2008, the motions at two observation stations nearby are synthesized in this paper. 30 finite fault based hybrid source models of the great Wenchuan earthquake with magnitude 8.0 is built. The global and local parameters are both generated from the truncated Normal distribution with mean and standard deviation values estimated by a set of semi-experiential calibration laws and from the regional seismo-tectonics, structure of the crust, and seismicity. A representative source model is then chosen from the corresponding response spectrum mostly close to the average one. The result motions are presented, and the characteristics of the time histories, response spectra and the peak accelerations are quite close to the recordings.


2014 ◽  
Vol 198 (2) ◽  
pp. 922-940 ◽  
Author(s):  
S. E. Minson ◽  
M. Simons ◽  
J. L. Beck ◽  
F. Ortega ◽  
J. Jiang ◽  
...  

2020 ◽  
Vol 110 (2) ◽  
pp. 920-936 ◽  
Author(s):  
Jiawei Li ◽  
Maren Böse ◽  
Max Wyss ◽  
David J. Wald ◽  
Alexandra Hutchison ◽  
...  

ABSTRACT Large earthquakes, such as Wenchuan in 2008, Mw 7.9, Sichuan, China, provide an opportunity for earthquake early warning (EEW), as many heavily shaken areas are far (∼50  km) from the epicenter and warning times could be sufficient (≥5  s) to take preventive action. On the other hand, earthquakes with magnitudes larger than ∼M 6.5 are challenging for EEW because source dimensions need to be defined to adequately estimate shaking. Finite-fault rupture detector (FinDer) is an approach to identify fault rupture extents from real-time seismic records. In this study, we playback local and regional onscale strong-motion waveforms of the 2008 Mw 7.9 Wenchuan, 2013 Mw 6.6 Lushan, and 2017 Mw 6.5 Jiuzhaigou earthquakes to study the performance of FinDer for the current layout of the China Strong Motion Network. Overall, the FinDer line-source models agree well with the observed spatial distribution of aftershocks and models determined from waveform inversion. However, because FinDer models are constructed to characterize seismic ground motions (as needed for EEW) instead of source parameters, the rupture length can be overestimated for events radiating high levels of high-frequency motions. If the strong-motion data used had been available in real time, 50%–80% of sites experiencing intensity modified Mercalli intensity IV–VII (light to very strong) and 30% experiencing VIII–IX (severe to violent) could have been issued a warning with 10 and 5 s, respectively, before the arrival of the S wave. We also show that loss estimates based on the FinDer line source are more accurate compared to point-source models. For the Wenchuan earthquake, for example, they predict a four to six times larger number of fatalities and injured, which is consistent with official reports. These losses could be provided 1/2∼3  hr faster than if they were based on more complex inversion rupture models.


2003 ◽  
Vol 19 (1) ◽  
pp. 67-85
Author(s):  
Ken Hatayama ◽  
Shinsaku Zama

We compare the distribution of damage to housing caused by the 1995 Hyogo-ken Nanbu (Kobe) earthquake with those estimated for several source models proposed for this earthquake. This comparison aims at identifying source models that can provide loss estimates that are most appropriate for planning emergency response activities just after earthquakes and/or for preparing effective countermeasures for mitigation of future earthquake disasters. The results suggest the necessity of finite-fault slip models that can reproduce or predict accurately strong ground motion within a frequency range closely related to damage. The loss estimation just after earthquakes based on source models can be counted on in areas without dense strong-ground-motion observation networks. Even with the dense networks, source models will also be useful for accurate loss estimation in the immediate vicinity of earthquake source faults.


2013 ◽  
Vol 353-356 ◽  
pp. 1934-1940
Author(s):  
Hai Ming Liu ◽  
Xia Xin Tao ◽  
Li Yuan Wang ◽  
Wei Jiang

The ground motions on two dam sites during the great Wenchuan earthquake with magnitude 8.0, motions are synthesized from 30 finite fault based hybrid source models and inversed regional parameters of source spectrum and motion attenuation. The results show that the peak ground acceleration values are less than those estimated directly from the Intensities Ⅹ and Ⅺ at the two sites, with mean values 259 and 716 gals. The motion at Shapai is much stronger than that at Zipingpu, and the spectrum is also wider than the latter, but the corresponding duration is shorter during the earthquake.


Author(s):  
Maren Böse ◽  
Sylvain Julien-Laferrière ◽  
Rémy Bossu ◽  
Frédérick Massin

Abstract Rapid information on fault rupture geometry is critically important to assess damage and fatalities in large earthquakes and is strongly needed to coordinate rapid rescue efforts if and where necessary. Many countries around the world, however, cannot afford to operate dense seismic networks required to rapidly determine rupture geometry. In this feasibility study, we investigate if crowd-sourced felt intensity reports can be used to close this information gap and enable determination of the orientation and spatial extent of fault ruptures. We apply the Finite-Fault Rupture Detector (FinDer) algorithm to felt intensity reports collected by the European-Mediterranean Seismological Centre (EMSC). We develop an empirical relationship between the azimuthal gap between felt reports and FinDer performance for automated event selection. This gives us a dataset of 36 global earthquakes (6.0≤M≤7.3) between 2014 and 2020. We find that the resulting FinDer line-source models are generally consistent with the spatially dependent intensity patterns described by the felt reports, and in many earthquakes achieve a good agreement with the finite-source models published in the literature: for 50% of events the difference in strike is less than 30°, and for 75% less than 55°. FinDer line-source models could be calculated automatically for global earthquakes (M≥6) within 10–30 min after their occurrence, provided a sufficient number of felt reports were available. However, our proposed method not only provides faster results, but also helps to fill a general information gap for many earthquakes around the world, for which rupture geometry information is currently unavailable.


Sign in / Sign up

Export Citation Format

Share Document