Ultrasonic Speed and Related Thermo-acoustical Parameters of Solutions of 1,1′-Bis(3-methyl-4-ethoxyacetylphenoxy)cyclohexane at Four Different Temperatures

2015 ◽  
Vol 44 (10) ◽  
pp. 1976-1996 ◽  
Author(s):  
Bhavin B. Dhaduk ◽  
Chirag B. Patel ◽  
P. H. Parsania

In this paper, the authors have given information regarding intermolecular interactions of aqueous dextran solution in urea. The behavior of dextran in urea has been examined by the help of ultrasonic interferometer working at frequency 5MHz at different temperatures ranging from 303 K to 323 K in 5K interval. Ultrasonic speed, density, viscosity measurements have been used for the evaluation of thermodynamic parameters like Gibb’s free energy (ΔG) as well as acoustical parameters are acoustic impedance (Z), isentropic compressibility (β), intermolecular free length (Lf ) and relaxation time (τ), etc. The results have been used to throw light on the nature of the interaction among solute and solvent, interpreted in the light of structural rearrangement occurs in the aqueous dextran and urea solution.


Author(s):  
Bhavesh J. Gangani ◽  
Parsotam H. Parsania

The density (ρ), viscosity (η) and ultrasonic speed (U) (2MHz) of THF solutions of symmetric double Schiff bases (SDSB-1,SDSB-2 and SDSB-3) were determined at 303.15, 308.15 and 313.15 K. Various acoustical parameters such as specific acoustical impedance (Z), isentropic compressibility (ks), Rao’s molar sound function (Rm), Van der Waals constant (b), internal pressure (π), free volume (Vf), intermolecular free path length (Lf), viscous relaxation time (τ) and classical absorption coefficient (α/f2)Cl), were determined using ρ, η and U data. The results are interpreted in terms of molecular interactions occurring in the solutions at different temperatures and concentrations. Linear increase of ρ, η U, Z, Rm, b, (α/f2)Cl and τ with increasing C, linear decrease of КS, Lf and π with increasing T, Vf increased linearly with C and T except SDSB-3 supported existence of strong molecular interactions in the solutions and confirming solvophilic nature of the Schiff bases. The structure, nature and size of the solutes and solvent, concentration and temperature affected molecular interactions.


2011 ◽  
Vol 8 (2) ◽  
pp. 762-766
Author(s):  
Pooja P. Adroja ◽  
S. P. Gami ◽  
J. P. Patel ◽  
P. H. Parsania

The density (ρ), viscosity (η) and ultrasonic speed (U) (2 MHz) of chloroform, THF, ethyl alcohol, ethyl acetate, 1,4-dioxane and 1,1ʼ-binaphthalene-2,2ʼ-diyl diacetate (DBNA) solutions have been determined at 308.15 K. Various acoustical parameters namely specific acoustical impedance (Z), adiabatic compressibility (κa), Van der Waals constant (b), intermolecular path length (Lf), internal pressure (π), Raoʼs molar sound function (R), relaxation time (τ), classical absorption coefficient (α/f2)cland solvation number (Sn) have been derived from ρ, η and U data and correlated with concentration (C). A fairly good to excellent correlation has been observed between a particular parameter and C. Linear increase of Z, R, b, (α/f2)cland τ (except EA) (R2= 0.90 – 0.999) and linear decrease of κs, π and Lf(R2= 0.947 – 0.995) with C supported existence of powerful molecular interactions in the solutions and further supported by nonlinear increase of Snwith C. A fairly constant Gibbs free energy of activation has been observed in all the solvent systems studied.


Author(s):  
B.J. Gangani ◽  
Parsotam H. Parsania

The density, viscosity and ultrasonic speed (2MHz) of chloroform and symmetric double Schiff bases have been investigated at 308.15K. Various acoustical parameters such as specific acoustical impedance (Z), adiabatic compressibility (Кa), Rao’s molarsound function (Rm), Vander Waals constant (b), internal pressure (π), free volume (Vf), intermolecular free path length (Lf), classical absorption coefficient (α/f2)Cl) and viscous relaxation time (τ) were determined using ultrasonic speed (U), viscosity (η) and density (ρ) data of Schiff bases solutions and correlated with concentration. Increasing linear or nonlinear trends of (Z, Rm, b, τ and (α/f2)Cl) and decreasing trend of Кa, Lf,, π and Vf with increasing concentration of Schiff bases suggested presence of strong molecular interactions in the solutions and solvophilic nature of the Schiff bases, which is further supported by the positive values of solvation number. The nature and position of substituent also affected the strength of molecular interactions.


Author(s):  
C.H. Srinivasu ◽  
K. Anil Kumar ◽  
S.K. Fakruddin ◽  
K. Narendra ◽  
T. Anjaneyulu

The values of ultrasonic velocity (u), density (ρ), and viscosity (η) have been measured experimentally in the binary liquid mixture containing 1-butanol and hexane over the entire range of composition at different temperatures 313.15 K, 318.15 K and 323.15 K. This experimental data have been used to calculate the acoustical parameters such as adiabatic compressibility (β), free length (Lf), molar volume (Vm) and acoustic impedance(z). The results have been qualitatively used to explain the molecular interactions between the components of the liquid mixture.


Author(s):  
A.B. Naik

Density, ultrasonic velocity of pure solvent, dimethylformamide (DMF) and ligand solutions of substituted thiazoles in DMF-water mixture were measured at different temperatures (303.15, 308.15, 313.15 and 318.15) K. Acoustical parameters such as adiabatic compressibility, intermolecular free length, acoustical impedance and relative association were determined from experimental data of density and ultrasonic velocity. The effect of temperature variations on the strength of molecular interaction has also been studied. An excellent correlation represents in terms of solute-solvent and solvent-solvent interaction at all temperatures.


2015 ◽  
Vol 1086 ◽  
pp. 111-119
Author(s):  
Selvi C. Senthamil ◽  
S. Ravichandran ◽  
C.P. Malliga ◽  
C. Thenmozhi ◽  
V. Kannappan

Ultrasonic velocity and density of salicilaldehyde with iodine in hexane has been measured at 293.15K, 298.15K, 303.15K and 308.15K in different concentration. Ultrasonic velocity has been measured using single frequency interferometer at 2MHz (Model F-81). By using the Ultrasonic velocity (u), density (ρ) and coefficient of viscosity (η) and the other acoustical parameters adiabatic compressibility (κ), free length (Lf), interaction parameter (α), Free volume (Vf) were calculated. The addition of hexane with a mixture leads to a compact structure due to presence of dipolar type interaction. This contributes to the decrease in free volume values and the internal pressure shows an increasing trend. The results have been discussed in terms of solute-solute and solute-solvent interactions between the component and the compatibility of these methods in predicting the interactions in these mixtures has also been discussed.Key Words salicilaldehyde, iodine, hexane, Ultrasonic velocity, molecular interactions.


Sign in / Sign up

Export Citation Format

Share Document