State-Feedback, Finite-Horizon, Cost Density-Shaping Control for the Linear Quadratic Gaussian Framework

2011 ◽  
Vol 150 (2) ◽  
pp. 251-274 ◽  
Author(s):  
M. J. Zyskowski ◽  
M. K. Sain ◽  
R. W. Diersing
2021 ◽  
Vol 21 (2) ◽  
pp. 79
Author(s):  
Supriyanto Praptodiyono ◽  
Hari Maghfiroh ◽  
Joko Slamet Saputro ◽  
Agus Ramelan

The electric motor is one of the technological developments which can support the production process. DC motor has some advantages compared to AC motor especially on the easier way to control its speed or position as well as its widely adjustable range. The main issue in the DC motor is controlling the angular speed with uncertainty and disturbance. The alternative solution of a control method with simple, easy to design, and implementable in a multi-input multi-output system is integral state feedback such as linear quadratic Gaussian (LQG). It is a combination between linear quadratic regulator and Kalman filter. One of the advantages of this method is the usage of fewer sensors compared with the original linear quadratic regulator method which uses sensors as many as the state in the system model. The design, simulation, and experimental study of the application of LQG as state feedback control in a DC-drive system have been done. Both performance and energy were analyzed and compared with conventional proportional integral derivative (PID). The gain of LQG was determined by trial whereas the PID gain is determined from MATLAB autotuning without fine-tuning. The load test and tracking test were carried out in the experiment. Both simulation and hardware tests showed the same result which LQG is superior in integral absolute error (IAE) by up to 74.37 % in loading test compared to PID. On the other side, LQG needs more energy, it consumes higher energy by 6.34 % in the load test.


2003 ◽  
Vol 22 (2) ◽  
pp. 97-108 ◽  
Author(s):  
Yan Sheng ◽  
Chao Wang ◽  
Ying Pan ◽  
Xinhua Zhang

This paper presents a new active structural control design methodology comparing the conventional linear-quadratic-Gaussian synthesis with a loop-transfer-recovery (LQG/LTR) control approach for structures subjected to ground excitations. It results in an open-loop stable controller. Also the closed-loop stability can be guaranteed. More importantly, the value of the controller's gain required for a given degree of LTR is orders of magnitude less than what is required in the conventional LQG/LTR approach. Additionally, for the same value of gain, the proposed controller achieves a much better degree of recovery than the LQG/LTR-based controller. Once this controller is obtained, the problems of control force saturation are either eliminated or at least dampened, and the controller band-width is reduced and consequently the control signal to noise ratio at the input point of the dynamic system is increased. Finally, numerical examples illustrate the above advantages.


Sign in / Sign up

Export Citation Format

Share Document