Representation theory for Banach algebras, Abelian groups, and semigroups in the spectral analysis of linear operators

2006 ◽  
Vol 137 (4) ◽  
pp. 4885-5036 ◽  
Author(s):  
A. G. Baskakov
1967 ◽  
Vol 8 (1) ◽  
pp. 41-49 ◽  
Author(s):  
F. F. Bonsall

Let B(X) denote the Banach algebra of all bounded linear operators on a Banach space X. Let t be an element of B(X), and let edenote the identity operator on X. Since the earliest days of the theory of Banach algebras, ithas been understood that the natural setting within which to study spectral properties of t is the Banach algebra B(X), or perhaps a closed subalgebra of B(X) containing t and e. The effective application of this method to a given class of operators depends upon first translating the data into terms involving only the Banach algebra structure of B(X) without reference to the underlying space X. In particular, the appropriate topology is the norm topology in B(X) given by the usual operator norm. Theorem 1 carries out this translation for the class of compact operators t. It is proved that if t is compact, then multiplication by t is a compact linear operator on the closed subalgebra of B(X) consisting of operators that commute with t.


2017 ◽  
Vol 16 (10) ◽  
pp. 1750200 ◽  
Author(s):  
László Székelyhidi ◽  
Bettina Wilkens

In 2004, a counterexample was given for a 1965 result of R. J. Elliott claiming that discrete spectral synthesis holds on every Abelian group. Since then the investigation of discrete spectral analysis and synthesis has gained traction. Characterizations of the Abelian groups that possess spectral analysis and spectral synthesis, respectively, were published in 2005. A characterization of the varieties on discrete Abelian groups enjoying spectral synthesis is still missing. We present a ring theoretical approach to the issue. In particular, we provide a generalization of the Principal Ideal Theorem on discrete Abelian groups.


2016 ◽  
Vol 23 (4) ◽  
pp. 615-622 ◽  
Author(s):  
Armen Sergeev

AbstractIn this paper, we give an interpretation of some classical objects of function theory in terms of Banach algebras of linear operators in a Hilbert space. We are especially interested in quasisymmetric homeomorphisms of the circle. They are boundary values of quasiconformal homeomorphisms of the disk and form a group ${\operatorname{QS}(S^{1})}$ with respect to composition. This group acts on the Sobolev space ${H^{1/2}_{0}(S^{1},\mathbb{R})}$ of half-differentiable functions on the circle by reparameterization. We give an interpretation of the group ${\operatorname{QS}(S^{1})}$ and the space ${H^{1/2}_{0}(S^{1},\mathbb{R})}$ in terms of noncommutative geometry.


2002 ◽  
Vol 31 (7) ◽  
pp. 421-442 ◽  
Author(s):  
S. Ludkovsky ◽  
B. Diarra

Banach algebras over arbitrary complete non-Archimedean fields are considered such that operators may be nonanalytic. There are different types of Banach spaces over non-Archimedean fields. We have determined the spectrum of some closed commutative subalgebras of the Banach algebraℒ(E)of the continuous linear operators on a free Banach spaceEgenerated by projectors. We investigate the spectral integration of non-Archimedean Banach algebras. We define a spectral measure and prove several properties. We prove the non-Archimedean analog of Stone theorem. It also contains the case ofC-algebrasC∞(X,𝕂). We prove a particular case of a representation of aC-algebra with the help of aL(Aˆ,μ,𝕂)-projection-valued measure. We consider spectral theorems for operators and families of commuting linear continuous operators on the non-Archimedean Banach space.


Author(s):  
S.A. Ayupov ◽  
F.N. Arzikulov

The present paper is devoted to 2-local derivations. In 1997, P. Semrl introduced the notion of 2-local derivations and described 2-local derivations on the algebra B(H) of all bounded linear operators on the infinite-dimensional separable Hilbert space H. After this, a number of paper were devoted to 2-local maps on different types of rings, algebras, Banach algebras and Banach spaces. A similar description for the finite-dimensional case appeared later in the paper of S. O. Kim and J. S. Kim. Y. Lin and T. Wong described 2-local derivations on matrix algebras over a finite-dimensional division ring. Sh. A. Ayupov and K. K. Kudaybergenov suggested a new technique and have generalized the above mentioned results for arbitrary Hilbert spaces. Namely they considered 2-local derivations on the algebra B(H) of all linear bounded operators on an arbitrary Hilbert space H and proved that every 2-local derivation on B(H) is a derivation. Then there appeared several papers dealing with 2-local derivations on associative algebras. In the present paper 2-lo\-cal derivations on various algebras of infinite dimensional matrix-valued functions on a compactum are described. We develop an algebraic approach to investigation of derivations and \mbox{2-local} derivations on algebras of infinite dimensional matrix-valued functions on a compactum and prove that every such 2-local derivation is a derivation. As the main result of the paper it is established that every \mbox{2-local} derivation on a ∗-algebra C(Q,Mn(F)) or C(Q,Nn(F)), where Q is a compactum, Mn(F) is the ∗-algebra of infinite dimensional matrices over complex numbers (real numbers or quaternoins) defined in section 1, Nn(F) is the ∗-subalgebra of Mn(F) defined in section 2, is a derivation. Also we explain that the method developed in the paper can be applied to Jordan and Lie algebras of infinite dimensional matrix-valued functions on a compactum.


Author(s):  
Walter R. Bloom ◽  
Joseph F. Sussich

AbstractIn 1953 P. P. Korovkin proved that if (Tn) is a sequence of positive linear operators defined on the space C of continuous real 2 π-periodic functions and lim Tnf = f uniformly for f = 1, cos and sin, then lim Tnf = f uniformly for all f ∈ C. Quantitative versions of this result have been given, where the rate of convergence is given in terms of that of the test functions 1, cos and sin, and the modulus of continuity of f. We extend this result by giving a quantitative version of Korovkin's theorem for compact connected abelian groups.


1992 ◽  
Vol 34 (2) ◽  
pp. 241-251 ◽  
Author(s):  
Volker Runde

Let A be a commutative algebra, and let M be a bimodule over A. A derivation from A into M is a linear mapping D: A→M that satisfiesIf M is only a left A-module, by a derivation from A into M we mean a linear mapping D: A→M such thatEach A-bimodule M is trivially a left module. However, unless it is commutative, i.e.the two classes of linear operators from A into M characterized by (1) and (2), respectively, need not coincide.


Sign in / Sign up

Export Citation Format

Share Document