Theoretical-experimental investigation of frequencies of free vibrations of circular cylindrical shells

2011 ◽  
Vol 174 (2) ◽  
pp. 254-267 ◽  
Author(s):  
A. Ya. Grigorenko ◽  
S. V. Puzyrev ◽  
A. P. Prigoda ◽  
V. V. Khorishko
2021 ◽  
Vol 37 ◽  
pp. 346-358
Author(s):  
Fuchun Yang ◽  
Xiaofeng Jiang ◽  
Fuxin Du

Abstract Free vibrations of rotating cylindrical shells with distributed springs were studied. Based on the Flügge shell theory, the governing equations of rotating cylindrical shells with distributed springs were derived under typical boundary conditions. Multicomponent modal functions were used to satisfy the distributed springs around the circumference. The natural responses were analyzed using the Galerkin method. The effects of parameters, rotation speed, stiffness, and ratios of thickness/radius and length/radius, on natural response were also examined.


1988 ◽  
Vol 110 (4) ◽  
pp. 533-537 ◽  
Author(s):  
R. K. Singal ◽  
K. Williams

The free vibrations of thick circular cylindrical shells and rings are discussed in this paper. The well-known energy method, which is based on the three-dimensional theory of elasticity, is used in the derivation of the frequency equation of the shell. The frequency equation yields resonant frequencies for all the circumferential modes of vibration, including the breathing and beam-type modes. Experimental investigations were carried out on several models in order to assess the validity of the analysis. This paper first describes briefly the method of analysis. In the end, the calculated frequencies are compared with the experimental values. A very close agreement between the theoretical and experimental values of the resonant frequencies for all the models was obtained and this validates the method of analysis.


2012 ◽  
Vol 223 (8) ◽  
pp. 1789-1807 ◽  
Author(s):  
S. Papargyri-Beskou ◽  
S. V. Tsinopoulos ◽  
D. E. Beskos

2017 ◽  
Vol 21 (3) ◽  
pp. 1009-1031 ◽  
Author(s):  
Ahmad Reza Ghasemi ◽  
Masood Mohandes

In this article, free vibration of rotating fiber–metal laminate thin circular cylindrical shells has been analyzed. Strain–displacement relations have been obtained based on Love’s first approximation shell theory. The variations of frequencies of the fiber–metal laminate cylindrical shell with rotational speeds for different axial and circumferential wave numbers, L/R ratios, metal thicknesses and volume fractions of metal have been presented. Also, free vibrations of the rotating fiber–metal laminate shell have been studied for carbon/epoxy, glass/epoxy and aramid/epoxy composite materials combining thin aluminum layers. The results showed that with increasing rotating speed, the gap between backward and forward waves frequencies increased.


1968 ◽  
Vol 90 (4) ◽  
pp. 589-595 ◽  
Author(s):  
Lars A˚ke Samuelson

The results are presented of an experimental investigation of creep buckling of circular cylindrical shells. The test specimens, manufactured from an aluminum alloy similar to 24S, had radius to thickness ratios between 30 and 150 and length to radius ratios greater than 2. They were subjected to axial compression or bending at a temperature of 225 deg C (430 deg F) and at various stress levels. The critical time under a constant load was determined as a function of the stress level, the shell geometry, and the type of loading. It was found that the shells subjected to pure compression had a substantially shorter lifetime than those subjected to pure bending with the same maximum applied stress. The thickest test specimens failed through collapse into a “wrinkling” mode which for the pure compression case is axisymmetric, whereas the thinner cylinders buckled into a typical diamond pattern. In all cases, buckling occurred at one of the edges. The postbuckling configuration was found to depend not only on the geometry of the shell but also on the load level. For very low stress levels, even the thinner cylinders buckled in the short wave pattern (symmetric for compression). A comparison between the present experimental results and theoretical values of the critical time presented in earlier works showed that a fairly good estimate may be obtained for the case of axial compression, whereas the approximate theory for creep buckling under pure bending gives an unduly conservative result.


2015 ◽  
Vol 37 (1) ◽  
pp. 43-56
Author(s):  
Tran Ich Thinh ◽  
Nguyen Manh Cuong ◽  
Vu Quoc Hien

Free vibrations of partial fluid-filled orthotropic circular cylindrical shells are investigated using the Dynamic Stiffness Method (DSM) or Continuous Element Method (CEM) based on theFirst Order Shear Deformation Theory (FSDT) and non-viscous incompressible fluid equations. Numerical examples are given for analyzing natural frequencies and harmonic responses of cylindrical shells partially and completely filled with fluid under various boundary conditions. The vibration frequencies for different filling ratios of cylindrical shells are obtained and compared with existing experimental and theoretical results which indicate that the fluid filling can reduce significantly the natural frequencies of studiedcylindrical shells. Detailed parametric analysis is carried out to show the effects of some geometrical and material parameters on the natural frequencies of orthotropic cylindrical shells. The advantages of this current solution consist in fast convergence, low computational cost and high precision validating for all frequency ranges.


Sign in / Sign up

Export Citation Format

Share Document