On the existence of solutions of the Beltrami equations with conditions on inverse dilatations

Author(s):  
Evgeny O. Sevost’yanov
2021 ◽  
Vol 18 (2) ◽  
pp. 243-254
Author(s):  
Evgeny Sevost’yanov

We have found one of possible conditions under which the degenerate Beltrami equation has a continuous solution of the Sobolev class. This solution is H\"{o}lder continuous in the ''weak'' (logarithmic) sense with the exponent power $\alpha=1/2.$ Moreover, it belongs to the class $W^{1, 2}_{\rm loc}.$ Under certain additional requirements, it can also be chosen as a homeomorphic solution. We give an appropriate example of the equation that satisfies all the conditions of the main result of the article, but does not have a homeomorphic Sobolev solution.


Filomat ◽  
2017 ◽  
Vol 31 (9) ◽  
pp. 2763-2771 ◽  
Author(s):  
Dalila Azzam-Laouir ◽  
Samira Melit

In this paper, we prove a theorem on the existence of solutions for a second order differential inclusion governed by the Clarke subdifferential of a Lipschitzian function and by a mixed semicontinuous perturbation.


Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5169-5175 ◽  
Author(s):  
H.H.G. Hashem

In this paper, we study the existence of solutions for a system of quadratic integral equations of Chandrasekhar type by applying fixed point theorem of a 2 x 2 block operator matrix defined on a nonempty bounded closed convex subsets of Banach algebras where the entries are nonlinear operators.


Author(s):  
Shohei Nakajima

AbstractWe prove existence of solutions and its properties for a one-dimensional stochastic partial differential equations with fractional Laplacian and non-Lipschitz coefficients. The method of proof is eatablished by Kolmogorov’s continuity theorem and tightness arguments.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1431
Author(s):  
Bilal Basti ◽  
Nacereddine Hammami ◽  
Imadeddine Berrabah ◽  
Farid Nouioua ◽  
Rabah Djemiat ◽  
...  

This paper discusses and provides some analytical studies for a modified fractional-order SIRD mathematical model of the COVID-19 epidemic in the sense of the Caputo–Katugampola fractional derivative that allows treating of the biological models of infectious diseases and unifies the Hadamard and Caputo fractional derivatives into a single form. By considering the vaccine parameter of the suspected population, we compute and derive several stability results based on some symmetrical parameters that satisfy some conditions that prevent the pandemic. The paper also investigates the problem of the existence and uniqueness of solutions for the modified SIRD model. It does so by applying the properties of Schauder’s and Banach’s fixed point theorems.


Sign in / Sign up

Export Citation Format

Share Document