The influence of amine templates on the structures and properties of uranyl oxalate complex

2021 ◽  
Vol 327 (3) ◽  
pp. 1375-1385
Author(s):  
Yin Su ◽  
Yaxuan Zou ◽  
Xueling Qiao ◽  
Jiangang He
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yaxuan Zou ◽  
Xueling Qiao ◽  
Yin Su ◽  
Jiangang He

Abstract As an important nuclear material, uranium is one of the most concerned elements in the nuclear fuel cycle, which could interact with many inorganic and organic ligands. Amine templates have a significant structural-oriented effect on the construction of uranyl oxalate complex. In this work, the piperazine diamine templates were used to synthesize uranyl oxalate complex and their crystal structures were resolved by single crystal diffraction, and their spectra were studied by IR, Raman, UV–vis, fluorescence, and EPR techniques. The final results show that crystal structures, properties and applications of uranyl oxalate complex have a close correlation with polyamine templates. The single crystal structure results show that the structural-oriented effect of piperazine diamine template is greatly affected by the proportion and concentration of solute in the surrounding environment. And the alkyl substituents on N atoms of amine templates are related to the tight of structures. Interestingly, 5# has a potential application as the original material for multiple reuse of fluorescent sensor materials. At present, there is no clear and in-depth study on the internal mechanism of such phenomena in solid uranyl complexes, and the specific mechanism needs to be further explored.


2015 ◽  
Vol 53 (3) ◽  
pp. 198-205
Author(s):  
Bong-Ki Ryu ◽  
Su-Yeon Choi ◽  
Young-Seok Kim ◽  
Jong-Hwan Kim ◽  
Jae-Yeop Jung ◽  
...  

Author(s):  
Austin M. Evans ◽  
Lucas R. Parent ◽  
Nathan C. Flanders ◽  
Ryan P. Bisbey ◽  
Edon Vitaku ◽  
...  

<div> <div> <div> <p>Polymerizing monomers into periodic two-dimensional (2D) networks provides structurally precise, atomically thin macromolecular sheets linked by robust, covalent bonds. These materials exhibit desirable mechanical, optoelectrotronic, and molecular transport properties derived from their designed structure and permanent porosity. 2D covalent organic frameworks (COFs) offer broad monomer scope, but are generally isolated as polycrystalline, insoluble powders with limited processability. Here we overcome this limitation by controlling 2D COF formation using a two- step procedure. In the first step, 2D COF nanoparticle seeds are prepared with approximate diameters of 30 nm. Next, monomers are slowly added to suppress new nucleation while promoting epitaxial growth on the existing seeds to sizes of several microns. The resulting COF nanoparticles are of exceptional and unprecedented quality, isolated as single crystalline materials with micron-scale domain sizes. These findings advance the controlled synthesis of 2D layered COFs and will enable a broad exploration of synthetic 2D polymer structures and properties. </p> </div> </div> </div>


2017 ◽  
Author(s):  
Austin M. Evans ◽  
Lucas R. Parent ◽  
Nathan C. Flanders ◽  
Ryan P. Bisbey ◽  
Edon Vitaku ◽  
...  

<div> <div> <div> <p>Polymerizing monomers into periodic two-dimensional (2D) networks provides structurally precise, atomically thin macromolecular sheets linked by robust, covalent bonds. These materials exhibit desirable mechanical, optoelectrotronic, and molecular transport properties derived from their designed structure and permanent porosity. 2D covalent organic frameworks (COFs) offer broad monomer scope, but are generally isolated as polycrystalline, insoluble powders with limited processability. Here we overcome this limitation by controlling 2D COF formation using a two- step procedure. In the first step, 2D COF nanoparticle seeds are prepared with approximate diameters of 30 nm. Next, monomers are slowly added to suppress new nucleation while promoting epitaxial growth on the existing seeds to sizes of several microns. The resulting COF nanoparticles are of exceptional and unprecedented quality, isolated as single crystalline materials with micron-scale domain sizes. These findings advance the controlled synthesis of 2D layered COFs and will enable a broad exploration of synthetic 2D polymer structures and properties. </p> </div> </div> </div>


Author(s):  
Burak Erman ◽  
James E. Mark

Rubber elasticity is an important sub-field of polymer science. This book is in many ways a sequel to the authors' previous, more introductory book, Rubberlike Elasticity: A Molecular Primer (Wiley-Interscience, 1988), and will in some respects replace the now classic book by L.R.G. Treloar, The Physics of Rubber Elasticity (Oxford, 1975). The present book has much in common with its predecessor, in particular its strong emphasis on molecular concepts and theories. Similarly, only equilibrium properties are covered in any detail. Though this book treats much of the same subject matter, it is a more comprehensive, more up-to-date, and somewhat more sophisticated treatment.


2020 ◽  
Vol 40 (8) ◽  
pp. 676-684
Author(s):  
Niping Dai ◽  
Junkun Tang ◽  
Manping Ma ◽  
Xiaotian Liu ◽  
Chuan Li ◽  
...  

AbstractStar-shaped arylacetylene resins, tris(3-ethynyl-phenylethynyl)methylsilane, tris(3-ethynyl-phenylethynyl) phenylsilane, and tris (3-ethynyl-phenylethynyl) silane (TEPHS), were synthesized through Grignard reaction between 1,3-diethynylbenzene and three types of trichlorinated silanes. The chemical structures and properties of the resins were characterized by means of nuclear magnetic resonance, fourier-transform infrared spectroscopy, Haake torque rheomoter, differential scanning calorimetry, dynamic mechanical analysis, mechanical test, and thermogravimetric analysis. The results show that the melt viscosity at 120 °C is lower than 150 mPa⋅s, and the processing windows are as wide as 60 °C for the resins. The resins cure at the temperature as low as 150 °C. The good processabilities make the resins to be suitable for resin transfer molding. The cured resins exhibit high flexural modulus and excellent heat-resistance. The flexural modulus of the cured TEPHS at room temperature arrives at as high as 10.9 GPa. Its temperature of 5% weight loss (Td5) is up to 697 °C in nitrogen. The resins show the potential for application in fiber-reinforced composites as high-performance resin in the field of aviation and aerospace.


Sign in / Sign up

Export Citation Format

Share Document