Local atomic structure of uranium ions and dissolution behavior of iron phosphate glass hosts to immobilize spent nuclear fuel

Author(s):  
Cheong Won Lee ◽  
Yong Kon Kwon ◽  
Jong Heo
MRS Advances ◽  
2020 ◽  
Vol 5 (3-4) ◽  
pp. 167-175
Author(s):  
Alexandre Barreiro Fidalgo ◽  
Olivia Roth ◽  
Anders Puranen ◽  
Lena Z. Evins ◽  
Kastriot Spahiu

ABSTRACTLeaching results to compare the dissolution behavior of a new type of fuel with additives (Advanced Doped Pellet Technology, ADOPT) with standard UO2 fuel are presented. Both fuels were irradiated in the same assembly of a commercial boiling water reactor to a local burnup of ∼58 MWd/kgU. Fuel fragments are leached in simplified groundwater in two autoclaves under hydrogen atmosphere, representing conditions in a canister failure scenario resulting in water intrusion for a spent nuclear fuel repository. Preliminary results indicate the uranium concentration decreased to 3-4x10-8 M after 421 days, slightly above the solubility of amorphous UO2. Xe has been detected in the gas phase of both autoclaves. The concentration of Cs and I seems to gradually approach constant values, yet the redox sensitive elements continue to slowly increase with time. The preliminary data obtained supports the hypothesis that there is no major difference in leaching behavior between the two fuels.


Author(s):  
Wojtek Dmowski ◽  
Takeshi Egami ◽  
Karen E. Swider-Lyons ◽  
Wen-Fu Yan ◽  
Sheng Dai ◽  
...  

The power of the atomic pair density function method to study the local atomic structure of dispersed materials is discussed for three examples (I) supercapacitor hydrous ruthenia, (II) electroctalyst platinum-iron phosphate and (III) nanoparticle gold catalyst. Hydrous ruthenia appears to be amorphous, but was found to be nanocomposite with RuO


2013 ◽  
Vol 1518 ◽  
pp. 133-138 ◽  
Author(s):  
L. Duro ◽  
O. Riba ◽  
A. Martínez-Esparza ◽  
J. Bruno

ABSTRACTThe dissolution of spent nuclear fuel is defined in two different time steps, i) the Instant Release Fraction (IRF) occurring shortly after water contacts the solid spent fuel and responsible of the fast release of those radionuclides that have been accumulated in the zones of the spent fuel pellet with low confinement, such as gap and grain boundaries and ii) the long term release of radionuclides confined in the spent fuel matrix, much slower and dependent on the conditions of the water that contacts the spent fuel.Several models have been developed to date to explain the dissolution behavior of spent nuclear fuel under disposal conditions. The Matrix Alteration Model (MAM) is one of the most evolved radiolytic models describing the dissolution mechanism in which an Alteration/Dissolution source term model is based on the oxidative dissolution of spent fuel. Under deep repository conditions and at the expected of water contacting time (after 1000 years of spent fuel storage), α radiation will be the main contributor to water radiolysis. In the current study, simulations evaluating the effect of surface area on the alteration/dissolution of spent fuel matrix are performed considering different particle sizes of spent fuel and simulations integrating the actinides dissolution have been performed considering the precipitation of secondary phases.


MRS Bulletin ◽  
1994 ◽  
Vol 19 (12) ◽  
pp. 24-27 ◽  
Author(s):  
L.H. Johnson ◽  
L.O. Werme

The geologic disposal of spent nuclear fuel is currently under consideration in many countries. Most of this fuel is in the form of assemblies of zirconium-alloy-clad rods containing enriched (1–4% 235U) or natural (0.71% 235U) uranium oxide pellets. Approximately 135,000 Mg are presently in temporary storage facilities throughout the world in nations with commercial nuclear power stations.Safe geologic disposal of nuclear waste could be achieved using a combination of a natural barrier (the host rock of the repository) and engineered barriers, which would include a low-solubility waste form, long-lived containers, and clay- and cement-based barriers surrounding the waste containers and sealing the excavations.A requirement in evaluating the safety of disposal of nuclear waste is a knowledge of the kinetics and mechanism of dissolution of the waste form in groundwater and the solubility of the waste form constituents. In the case of spent nuclear fuel, this means developing an understanding of fuel microstructure, its impact on release of contained fission products, and the dissolution behavior of spent fuel and of UO2, the principal constituent of the fuel.


2002 ◽  
Author(s):  
Glenn E. McCreery ◽  
Keith G. Condie ◽  
Randy C. Clarksean ◽  
Donald M. McEligot

2020 ◽  
Vol 2020 (1) ◽  
pp. 67-77
Author(s):  
Nikita Vladimirivich Kovalyov ◽  
Boris Yakovlevich Zilberman ◽  
Nikolay Dmitrievich Goletskiy ◽  
Andrey Borisovich Sinyukhin

Sign in / Sign up

Export Citation Format

Share Document