Investigating the possibility of increasing cooling air flow in a hydrogenerator rotor fan

Author(s):  
Mohammad Mehdi Behravesh ◽  
Mohammad Reza Saffarian ◽  
Seyed Saied Bahrainian
Author(s):  
Liu Jian Jun

An analytical study was undertaken using the performance model of a two spool direct drive high BPR 300kN thrust turbofan engine, to investigate the effects of advanced configurations on overall engine performance. These include variable bypass nozzle, variable cooling air flow and more electric technique. For variable bypass nozzle, analysis on performance of outer fan at different conditions indicates that different operating points cannot meet optimal performance at the same time if the bypass nozzle area kept a constant. By changing bypass nozzle throat area at different states, outer fan operating point moves to the location where airflow and efficiency are more appropriate, and have enough margin away from surge line. As a result, the range of variable area of bypass nozzle throat is determined which ensures engine having a low SFC and adequate stability. For variable cooling airflow, configuration of turbine cooling air flow extraction and methodology for obtaining change of cooling airflow are investigated. Then, base on temperature analysis of turbine vane and blade and resistance of cooling airflow, reduction of cooling airflow is determined. Finally, using performance model which considering effect of cooling air flow on work and efficiency of turbine, variable cooling airflow effect on overall performance is analyzed. For more electric technique, the main characteristic is to use power off-take instead of overboard air extraction. Power off-take and air extraction effect on overall performance of high bypass turbofan engine is compared. Investigation demonstrates that power offtake will have less SFC.


2000 ◽  
Author(s):  
Toshikazu Nakanishi ◽  
Sanshirou Shimoda ◽  
Nobuhiko Yamasaki ◽  
Yuzo Inokuchi ◽  
Tsuyoshi Takemoto ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xingyun Jia ◽  
Huaiyu Dong ◽  
Yuzhou Ming ◽  
Yue Wu ◽  
Lidong He

Abstract The Reynolds-averaged Navier–Stokes (RANS) solver was used to calculate, using a test rig to verify the accuracy. The interaction mechanism between different sealed cooling air and gas ingestion at the rotor-stator cavity and chute rim clearance has been investigated. Several groups of representative sealed cooling air flow were selected to explore the cooling efficiency, flow characteristics, tangential and radial velocity ratios in the cavity and the pressure potential field characteristics of trailing edge. The conclusions are obtained: the sealed cooling air flow rate has a significant marginal effect on the sealing effect. The gas ingestion behavior under the small sealed cooling air flow belongs to the disc cavity intrusion, and the intrusion and outflow regions at the of rim clearance are obviously divided into the intrusion characteristic section and the outflow characteristic section. The ingestion behavior under large sealed cooling air flow belongs to clearance ingestion, and the intrusion flow is limited to the chute rim clearance position, which cannot be further penetrated into the cavity. At this time, the clearance area and the cavity area become independent, and the gas ingestion characteristics depend more on the internal flow of the clearance and the vortex structure formed.


Sign in / Sign up

Export Citation Format

Share Document