Energy, exergy and economic analysis of utilizing the supercritical CO2 recompression Brayton cycle integrated with solar energy in natural gas city gate station

Author(s):  
Amir Hossein Shokouhi Tabrizi ◽  
Hamid Niazmand ◽  
Mahmood Farzaneh-Gord ◽  
Amir Ebrahimi-Moghadam
Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5043
Author(s):  
Rhushikesh Ghotkar ◽  
Ellen B. Stechel ◽  
Ivan Ermanoski ◽  
Ryan J. Milcarek

The low prices and its relatively low carbon intensity of natural gas have encouraged the coal replacement with natural gas power generation. Such a replacement reduces greenhouse gases and other emissions. To address the significant energy penalty of carbon dioxide (CO2) sequestration in gas turbine systems, a novel high efficiency concept is proposed and analyzed, which integrates a flame-assisted fuel cell (FFC) with a supercritical CO2 (sCO2) Brayton cycle air separation. The air separation enables the exhaust from the system to be CO2 sequestration-ready. The FFC provides the heat required for the sCO2 cycle. Heat rejected from the sCO2 cycle provides the heat required for adsorption-desorption pumping to isolate oxygen via air separation. The maximum electrical efficiency of the FFC sCO2 turbine hybrid (FFCTH) without being CO2 sequestration-ready is 60%, with the maximum penalty being 0.68% at a fuel-rich equivalence ratio (Φ) of 2.8, where Φ is proportional to fuel-air ratio. This electrical efficiency is higher than the standard sCO2 cycle by 6.85%. The maximum power-to-heat ratio of the sequestration-ready FFCTH is 233 at a Φ = 2.8. Even after including the air separation penalty, the electrical efficiency is higher than in previous studies.


Author(s):  
Mohamed Ashfaaq Riphque ◽  
Hadi Nabipour-Afrouzi ◽  
Chin-Leong Wooi ◽  
SanChuin Liew ◽  
Kamyar Mehranzamir ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4292
Author(s):  
Lidia Lombardi ◽  
Barbara Mendecka ◽  
Simone Fabrizi

Industrial anaerobic digestion requires low temperature thermal energy to heat the feedstock and maintain temperature conditions inside the reactor. In some cases, the thermal requirements are satisfied by burning part of the produced biogas in devoted boilers. However, part of the biogas can be saved by integrating thermal solar energy into the anaerobic digestion plant. We study the possibility of integrating solar thermal energy in biowaste mesophilic/thermophilic anaerobic digestion, with the aim of reducing the amount of biogas burnt for internal heating and increasing the amount of biogas, further upgraded to biomethane and injected into the natural gas grid. With respect to previously available studies that evaluated the possibility of integrating solar thermal energy in anaerobic digestion, we introduce the topic of economic sustainability by performing a preliminary and simplified economic analysis of the solar system, based only on the additional costs/revenues. The case of Italian economic incentives for biomethane injection into the natural gas grid—that are particularly favourable—is considered as reference case. The amount of saved biogas/biomethane, on an annual basis, is about 4–55% of the heat required by the gas boiler in the base case, without solar integration, depending on the different considered variables (mesophilic/thermophilic, solar field area, storage time, latitude, type of collector). Results of the economic analysis show that the economic sustainability can be reached only for some of the analysed conditions, using the less expensive collector, even if its efficiency allows lower biomethane savings. Future reduction of solar collector costs might improve the economic feasibility. However, when the payback time is calculated, excluding the Italian incentives and considering selling the biomethane at the natural gas price, its value is always higher than 10 years. Therefore, incentives mechanism is of great importance to support the economic sustainability of solar integration in biowaste anaerobic digestion producing biomethane.


2015 ◽  
Author(s):  
Jon W. Teets ◽  
J. Michael Teets

A SUNTRACKER (illustrated in figure1), is a Concentrating Solar Power (CSP) unit, in the category of solar dish engines. The novel solar dish engine module (shown in figure 2) is designed to provide 10.1kW electric power (measured at the engine output electric power lugs), from a conversion of 21kW solar energy from the solar dish reflective sun light to the high temperature receiver focal point. Total electric power output from the solar dish engine module is attributed to combined cycles, closed brayton cycle (CBC) and a organic rankine cycle (ORC), both of which are hermetically sealed to atmosphere. The CBC engine receives 21kW solar energy from a solar dish, estimated to have 27 square meters (291 square feet) reflective surface area. However, unlike the photovoltaic (PV) units, the SUNTRACKER will provide increased use of available solar energy from sunlight. Concentrated sunlight from the dish will focus on the CBC engine receiver, which in turn heats the working fluid media to as much as 1600F, pending the ratio of solar dish to receiver areas. A specific gas mixture of xenon/helium, with excellent thermodynamic properties is used for the high temperature application. Turbomachinery in the CBC engine has one moving part / assembly (compressor impeller, alternator rotor and turbine rotor), mounted on compliant foil bearings. Reference figure 4 as an example. The engine operates with a compressor impeller stage pressure ratio 1.6, and is recuperated. Electric power, measured at the CBC engine electric power lugs, is 6.4kW. The CBC engine is not new, (a closed Brayton cycle, sealed to atmosphere) [1], [4], [8], [18], [19]. However, the application to extract thermal energy from the sunlight and provide electric power in commercial and residential use is (patented). In addition, to increase the efficiency of solar energy conversion to electric power, waste heat from the CBC engine provides thermal energy to an ORC engine, to generate an additional electrical output of 3.7kW (measured at the output electric power lugs). With use of an ORC system, the size of the radiator (CBC unit) for heat rejection is reduced significantly. Working fluid HFC-RC245fa [10] was selected for the ORC unit, based on the low temperature application. Also, as with the CBC turbomachinery, the ORC rotor assembly has one moving part, comprised of a pump impeller, alternator rotor and turbine rotor. With the two engines combined, total system thermal efficiency is 48% (10.1kW electric power out / 21kW solar energy in). However, power electronics are needed for conversion of high frequency voltage at the engine output electric power leads to 60/50 Hz power, for customer use. Power electronics losses for this machine, debits the power 0.5 kW. Thus total electric power to the customer, as measured at power electronics output terminals, is 9.6kW. With solar energy, from the reflective sunlight solar dish 21kW and measured output power from the power electronics 9.6kW, the conversion of solar energy to useful electric power an efficiency 46% (i.e. 9.6kW / 21kW). In addition, the design does not require external water / liquid for cooling.


Author(s):  
Qiuwan Du ◽  
Yuqi Wang ◽  
Di Zhang ◽  
Yonghui Xie

Radial-inflow turbine is a core component in supercritical CO2 (SCO2) Brayton cycle. The leakage from the nozzle outlet towards the impeller back brings a great challenge to the efficiency and security of the power system. In this paper, the labyrinth seal (LS) and dry gas seal (DGS) are arranged on the impeller back of a SCO2 radial-inflow turbine and the influence on the comprehensive performance is investigated. Results demonstrate that both LS and DGS configurations can significantly reduce leakage of the impeller back and DGS configuration performs better. Compared with the configuration without leakage, the power and efficiency of DGS configuration are only reduced by 0.27% and 0.35% respectively. The seal clearance and the inlet width have a greater effect on LS configuration. The thermo-mechanical seal deformation values of DGS configurations are all less than 8 μm, which verifies the feasibility. Finally, a novel combined seal configuration with both LS and DGS is proposed and excellent performance is achieved, providing a potential approach for the sealing problem of SCO2 radial-inflow turbine.


Sign in / Sign up

Export Citation Format

Share Document