Assessment on assorted hyper-elastic material models applied for large deformation soft finger contact problems

2011 ◽  
Vol 7 (4) ◽  
pp. 299-305 ◽  
Author(s):  
K. Venkatesh Raja ◽  
R. Malayalamurthi
Author(s):  
Omid Bahrami Khameslouie ◽  
Mohammad Hossein Soorgee ◽  
Ehsan Ghafarallahi ◽  
Seyed Ebrahim Moussavi Torshizi

2021 ◽  
Vol 8 (3) ◽  
pp. 32
Author(s):  
Dimitrios P. Sokolis

Multiaxial testing of the small intestinal wall is critical for understanding its biomechanical properties and defining material models, but limited data and material models are available. The aim of the present study was to develop a microstructure-based material model for the small intestine and test whether there was a significant variation in the passive biomechanical properties along the length of the organ. Rat tissue was cut into eight segments that underwent inflation/extension testing, and their nonlinearly hyper-elastic and anisotropic response was characterized by a fiber-reinforced model. Extensive parametric analysis showed a non-significant contribution to the model of the isotropic matrix and circumferential-fiber family, leading also to severe over-parameterization. Such issues were not apparent with the reduced neo-Hookean and (axial and diagonal)-fiber family model, that provided equally accurate fitting results. Absence from the model of either the axial or diagonal-fiber families led to ill representations of the force- and pressure-diameter data, respectively. The primary direction of anisotropy, designated by the estimated orientation angle of diagonal-fiber families, was about 35° to the axial direction, corroborating prior microscopic observations of submucosal collagen-fiber orientation. The estimated model parameters varied across and within the duodenum, jejunum, and ileum, corroborating histologically assessed segmental differences in layer thicknesses.


1999 ◽  
Vol 65 (637) ◽  
pp. 1859-1866
Author(s):  
Xian CHEN ◽  
Kazuhiro NAKAMURA ◽  
Masahiko MORI ◽  
Toshiaki HISADA

Author(s):  
Carolyn E. Hampton ◽  
Michael Kleinberger

Recent research on behind-armor blunt trauma (BABT) has focused on the personal protection offered by lightweight armor. A finite element analysis was performed to improve the biofidelity of the US Army Research Laboratory (ARL) human torso model to prepare for simulating blunt chest impacts and BABT. The overly stiff linear elastic material models for the torso were replaced with material characterizations drawn from current literature. FE torso biofidelity was determined by comparing peak force, force-compression, peak compression, and energy absorption data with cadaver responses to a 23.5 kg pendulum impacting at the sternum at 6.7 m/s. Nonlinear foam, viscous foam, soft rubbers, fibrous hyperelastic rubbers, and low moduli elastic material were considered as material models for the flesh, organs, and bones. Simulations modifying one tissue type revealed that the flesh characterization was most crucial for predicting compression and force, followed closely by the organs characterizations. Combining multiple tissue modifications allowed the FE torso to mimic the cadaveric torsos by reducing peak force and increasing chest compression and energy absorption. Limitations imposed by the Lagrangian finite element approach are discussed with potential workarounds described. Proposed future work is split between considering additional impact scenarios accounting for position and biomaterial variability.


Author(s):  
Ben Mann ◽  
Kurtis Ford ◽  
Mike Neilsen ◽  
Dan Kammler

Abstract Ceramic to metal brazing is a common bonding process used in many advanced systems such as automotive engines, aircraft engines, and electronics. In this study, we use optimization techniques and finite element analysis utilizing viscoplastic and thermo-elastic material models to find an optimum thermal profile for a Kovar® washer bonded to an alumina button that is typical of a tension pull test. Several active braze filler materials are included in this work. Cooling rates, annealing times, aging, and thermal profile shapes are related to specific material behaviors. Viscoplastic material models are used to represent the creep and plasticity behavior in the Kovar® and braze materials while a thermo-elastic material model is used on the alumina. The Kovar® is particularly interesting because it has a Curie point at 435°C that creates a nonlinearity in its thermal strain and stiffness profiles. This complex behavior incentivizes the optimizer to maximize the stress above the Curie point with a fast cooling rate and then favors slow cooling rates below the Curie point to anneal the material. It is assumed that if failure occurs in these joints, it will occur in the ceramic material. Consequently, the maximum principle stress of the ceramic is minimized in the objective function. Specific details of the stress state are considered and discussed.


Author(s):  
Arnaud Bruyas ◽  
François Geiskopf ◽  
Pierre Renaud

Compliant joints are widely used in mechanisms when accurate movements are required. With no assembly requested, they are also a great tool for mesoscale robotics, a field in which compactness and large joint amplitudes are necessary features. In this paper, an original multi-material compliant revolute joint is presented. Taking advantage of multi-material 3D printing, it exhibits a novel design with the integration of an hyper-elastic material. Thanks to a helical shape design, a large range of motion is obtained, and the incompressibility of the hyper-elastic material is used to improve the stiffness properties of the joint while keeping it compact. The spring effect of compliant joints makes mechanism actuation more difficult. The proposed joint is therefore designed with an integrated static balancing system in order to minimize actuation torques. The balancing system is composed of a bistable mechanism, which geometry optimization is presented. Experimental assessment demonstrate that the joint possesses a range of motion of 120°, and the balancing system reduces actuation moments by almost 60%.


2012 ◽  
pp. 183-213
Author(s):  
Franco M. Capaldi

Sign in / Sign up

Export Citation Format

Share Document