Electromechanical analytical model of shape memory alloy based tunable cantilevered piezoelectric energy harvester

2018 ◽  
Vol 15 (3) ◽  
pp. 611-627 ◽  
Author(s):  
M. Senthilkumar ◽  
M. G. Vasundhara ◽  
G. K. Kalavathi
10.5772/7228 ◽  
2009 ◽  
Vol 6 (3) ◽  
pp. 29 ◽  
Author(s):  
Hu Bing-Shan ◽  
Wang Li-Wen ◽  
Fu Zhuang ◽  
Zhao Yan-zheng

Wall climbing robots using negative pressure suction always employ air pumps which have great noise and large volume. Two prototypes of bio-inspired miniature suction cup actuated by shape memory alloy (SMA) are designed based on studying characteristics of biologic suction apparatuses, and the suction cups in this paper can be used as adhesion mechanisms for miniature wall climbing robots without air pumps. The first prototype with a two-way shape memory effect (TWSME) extension TiNi spring imitates the piston structure of the stalked sucker; the second one actuated by a one way SMA actuator with a bias has a basic structure of stiff margin, guiding element, leader and elastic element. Analytical model of the second prototype is founded considering the constitutive model of the SMA actuator, the deflection of the thin elastic plate under compound load and the thermo-dynamic model of the sealed air cavity. Experiments are done to test their suction characteristics, and the analytical model of the second prototype is simulated on Matlab/simulink platform and validated by experiments.


Author(s):  
Fabrizio Niccoli ◽  
Valentina Giovinco ◽  
Cedric Garion ◽  
Carmine Maletta ◽  
Paolo Chiggiato

Recent studies on Shape Memory Alloy rings have been undertaken at the European Organization for Nuclear Research (CERN) to develop smart and leak-tight couplers for Ultra High Vacuum systems of particle accelerators. A special thermo-mechanical process (training) is needed to provide SMA rings with proper functional properties, that is to allow thermal mounting, dismounting, and leak tight coupling within a given service temperature window. Low temperature ring expansion is a crucial part of the training process as it gives suitable size, shape recovery properties, and thermal stability range to the SMA element. An analytical model, based on simplified elastic-plastic axisymmetric concepts, has been developed and implemented in a commercial software to simulate isothermal SMA rings expansions. It is particularly useful to predict the final size of a martensitic SMA coupler as a function of the initial dimensions and of the pre-deformation parameters. The effectiveness of the model has been demonstrated by analyzing the stress/deformation field occurring in a wide range of ring geometries for different load cases including martensite reorientation and plasticity. The predictions of the analytical model have been systematically compared with those obtained by axisymmetric finite element (FE) analyses based on elastic-plastic constitutive models and experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document