Influence of Compressible Intercontact Liquid on the Interaction of an Elastic Body with a Rigid Base Textured by Rectangular Grooves

2018 ◽  
Vol 54 (3) ◽  
pp. 354-360
Author(s):  
О. P. Kozachok
Keyword(s):  
Author(s):  
Oleg Kozachok

The frictionless contact between an elastic body and a rigid base in the presence of a periodically arranged quasielliptic grooves with in interface gaps in the presence of a compressible liquid is modeled. The contact problem formulated for the elastic half-space is reduced to a singular integral equation (SIE) with Hilbert kernel for a derivative of a height of the interface gaps, which is transformed to a SIE with Cauchy kernel that is solved analytically, and a transcendental equation for liquid’s pressure, which has been obtained from the equation of compressible barotropic liquid state. The dependences of the pressure of the liquid, shape of the gaps, average normal displacement and contact compliance of the bodies on the applied load and bulk modulus of the liquid are analysed.


2016 ◽  
Vol 11 (1) ◽  
pp. 119-126 ◽  
Author(s):  
A.A. Aganin ◽  
N.A. Khismatullina

Numerical investigation of efficiency of UNO- and TVD-modifications of the Godunov method of the second order accuracy for computation of linear waves in an elastic body in comparison with the classical Godunov method is carried out. To this end, one-dimensional cylindrical Riemann problems are considered. It is shown that the both modifications are considerably more accurate in describing radially converging as well as diverging longitudinal and shear waves and contact discontinuities both in one- and two-dimensional problem statements. At that the UNO-modification is more preferable than the TVD-modification because exact implementation of the TVD property in the TVD-modification is reached at the expense of “cutting” solution extrema.


2008 ◽  
Vol 43 (3) ◽  
pp. 437-452 ◽  
Author(s):  
A. V. Kaptsov ◽  
E. I. Shifrin

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 279
Author(s):  
Kentaro Noda ◽  
Jian Sun ◽  
Isao Shimoyama

A tensor sensor can be used to measure deformations in an object that are not visible to the naked eye by detecting the stress change inside the object. Such sensors have a wide range of application. For example, a tensor sensor can be used to predict fatigue in building materials by detecting the stress change inside the materials, thereby preventing accidents. In this case, a sensor of small size that can measure all nine components of the tensor is required. In this study, a tensor sensor consisting of highly sensitive piezoresistive beams and a cantilever to measure all of the tensor components was developed using MEMS processes. The designed sensor had dimensions of 2.0 mm by 2.0 mm by 0.3 mm (length by width by thickness). The sensor chip was embedded in a 15 mm3 cubic polydimethylsiloxane (PDMS) (polydimethylsiloxane) elastic body and then calibrated to verify the sensor response to the stress tensor. We demonstrated that 6-axis normal and shear Cauchy stresses with 5 kPa in magnitudes can be measured by using the fabricated sensor.


Sign in / Sign up

Export Citation Format

Share Document