Modification of Synthetic Zeolite with Metal Cations to Increase its Anticorrosion Efficiency

2021 ◽  
Author(s):  
S. А. Korniy ◽  
І. М. Zin ◽  
О. P. Khlopyk ◽  
М. Ya. Holovchuk ◽  
М.-О. М. Danyliak ◽  
...  
2021 ◽  
Vol 2021 (6) ◽  
pp. 5307-5311
Author(s):  
IVETA PANDOVA ◽  
◽  
MIROSLAV RIMAR ◽  

The article presents the results of research on reducing the concentration of heavy metals, such as copper and nickel, on natural zeolite in comparison with synthetic zeolite and chemically treated natural zeolite. The reduction of the content of specific types of heavy metals from aqueous solutions was investigated by the method of sorption kinetics. The results indicate the ability of natural zeolites to compete with synthetic zeolites.


1981 ◽  
Vol 31 (1) ◽  
pp. 597-601 ◽  
Author(s):  
Karim Farag ◽  
Francis Perineau ◽  
Antoine Gaset ◽  
Jacques Molinier

1992 ◽  
Vol 57 (12) ◽  
pp. 2475-2480 ◽  
Author(s):  
Milan Brutovský ◽  
Štefan Gerej ◽  
Ján Novák ◽  
Lucia Ferdinandyová

Catalysts were prepared from VOPO4.xH2O.yH3PO4 (x = 0.3-2, y = 0.2-0.85) by reduction with SO2 up to a final temperature of 750-800 °C, and activated in a reaction mixture of 1.0-1.4% butane in air up to 500 °C. The structure characteristics and phase composition of the catalysts were found to be affected by the preparation procedure and heat treatment regime. Their diffraction lines and IR spectra revealed that the catalysts from larger and less defective crystals than catalysts which were obtained from the VOHPO4.xH2O.yH3PO4 precursor and activated in the reaction mixture at temperatures up to 500 °C. In the catalysts prepared by the above procedure, the tendency to the formation of phases of higher-condensed phosphates, in particular VO(PO3)2 or even V(PO3)3, increases with increasing n(P):n(V) ratio and is then more pronounced than with vanadium-phosphorus catalysts prepared by other procedures. The tendency to the formation of the catalytically less active condensed phosphates is partly suppressed by the embedding of modifying metal cations (Fe or Cu in this case).


ChemInform ◽  
2010 ◽  
Vol 32 (28) ◽  
pp. no-no
Author(s):  
Alexis T. Bell
Keyword(s):  

2020 ◽  
Vol 22 (46) ◽  
pp. 27105-27120
Author(s):  
Giacomo Prampolini ◽  
Marco d'Ischia ◽  
Alessandro Ferretti

An extensive exploration of the interaction PESs of phenol and catechol complexes with alkali metal cations reveals a striking effect of –OH substitution on the balance between cation-π and σ-type noncovalent interactions.


Sign in / Sign up

Export Citation Format

Share Document