Sequential Simulation of a Conditional Boolean Model

Author(s):  
Alan Troncoso ◽  
Xavier Freulon ◽  
Christian Lantuéjoul
Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 368
Author(s):  
Cristina Alegria ◽  
Natália Roque ◽  
Teresa Albuquerque ◽  
Paulo Fernandez ◽  
Maria Margarida Ribeiro

Research Highlights: Modelling species’ distribution and productivity is key to support integrated landscape planning, species’ afforestation, and sustainable forest management. Background and Objectives: Maritime pine (Pinus pinaster Aiton) forests in Portugal were lately affected by wildfires and measures to overcome this situation are needed. The aims of this study were: (1) to model species’ spatial distribution and productivity using a machine learning (ML) regression approach to produce current species’ distribution and productivity maps; (2) to model the species’ spatial productivity using a stochastic sequential simulation approach to produce the species’ current productivity map; (3) to produce the species’ potential distribution map, by using a ML classification approach to define species’ ecological envelope thresholds; and (4) to identify present and future key factors for the species’ afforestation and management. Materials and Methods: Spatial land cover/land use data, inventory, and environmental data (climate, topography, and soil) were used in a coupled ML regression and stochastic sequential simulation approaches to model species’ current and potential distributions and productivity. Results: Maritime pine spatial distribution modelling by the ML approach provided 69% fitting efficiency, while species productivity modelling achieved only 43%. The species’ potential area covered 60% of the country’s area, where 78% of the species’ forest inventory plots (1995) were found. The change in the Maritime pine stands’ age structure observed in the last decades is causing the species’ recovery by natural regeneration to be at risk. Conclusions: The maps produced allow for best site identification for species afforestation, wood production regulation support, landscape planning considering species’ diversity, and fire hazard mitigation. These maps were obtained by modelling using environmental covariates, such as climate attributes, so their projection in future climate change scenarios can be performed.


DNA Repair ◽  
2020 ◽  
Vol 96 ◽  
pp. 102971 ◽  
Author(s):  
Shantanu Gupta ◽  
Daner A. Silveira ◽  
José Carlos M. Mombach
Keyword(s):  

2001 ◽  
Vol 33 (1) ◽  
pp. 39-60 ◽  
Author(s):  
Wolfgang Weil

In generalization of the well-known formulae for quermass densities of stationary and isotropic Boolean models, we prove corresponding results for densities of mixed volumes in the stationary situation and show how they can be used to determine the intensity of non-isotropic Boolean models Z in d-dimensional space for d = 2, 3, 4. We then consider non-stationary Boolean models and extend results of Fallert on quermass densities to densities of mixed volumes. In particular, we present explicit formulae for a planar inhomogeneous Boolean model with circular grains.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0134214 ◽  
Author(s):  
Anastasia Chasapi ◽  
Paulina Wachowicz ◽  
Anne Niknejad ◽  
Philippe Collin ◽  
Andrea Krapp ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Borja Millan ◽  
Santiago Velasco-Forero ◽  
Arturo Aquino ◽  
Javier Tardaguila

This paper describes a new methodology for noninvasive, objective, and automated assessment of yield in vineyards using image analysis and Boolean model. Image analysis, as an inexpensive and noninvasive procedure, has been studied for this purpose, but the effect of occlusions from the cluster or other organs of the vine has an impact that diminishes the quality of the results. To reduce the influence of the occlusions in the estimation, the number of berries was assessed using the Boolean model. To evaluate the methodology, three different datasets were studied: cluster images, manually acquired vine images, and vine images captured on-the-go using a quad. The proposed algorithm estimated the number of berries in cluster images with a root mean square error (RMSE) of 20 and a coefficient of determination (R2) of 0.80. Vine images manually taken were evaluated, providing 310 grams of mean error and R2=0.81. Finally, images captured using a quad equipped with artificial light and automatic camera triggering were also analysed. The estimation obtained applying the Boolean model had 610 grams of mean error per segment (three vines) and R2=0.78. The reliability against occlusions and segmentation errors of the Boolean model makes it ideal for vineyard yield estimation. Its application greatly improved the results when compared to a simpler estimator based on the relationship between cluster area and weight.


Author(s):  
Massimo Melucci
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document