Oxidative stress and the genomic regulation of aldosterone-stimulated NHE1 activity in SHR renal proximal tubular cells

2007 ◽  
Vol 310 (1-2) ◽  
pp. 191-201 ◽  
Author(s):  
Vanda Pinto ◽  
Maria João Pinho ◽  
Ulrich Hopfer ◽  
Pedro A. Jose ◽  
Patrício Soares-da-Silva
2020 ◽  
Vol 159 ◽  
pp. S109-S110
Author(s):  
Alexander Meissner ◽  
Cornelia Hirsch ◽  
Gerhard Fritz ◽  
James Adjaye ◽  
Nicole Schupp

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Ryousuke Satou ◽  
Andrea Zsombok ◽  
Andrei V Derbenev

Overactivity of the intrarenal renin-angiotensin system contributes to the development of hypertension and renal injury. In this process, regulation of angiotensinogen (AGT) in renal proximal tubular cells (RPTC) is a key factor. Oxidative stress stimulates AGT expression accompanied by activation of p38 MAPK in RPTC. Transient receptor potential A1 (TRPA1) is known to be a sensor activated by a variety of noxious stimuli including hydrogen peroxide. Activated TRPA1 induces calcium influx across the plasma membrane leading to activation of AGT-inducible signal transducers. However, the presence and function of TRPA1 in the kidney have not been delineated. Therefore, this study was performed to demonstrate expression of intrarenal TRPA1 and its role in AGT augmentation in RPTC. Expression of TRPA1 in mouse kidney and cultured mouse RPTC were determined by RT-PCR, in situ hybridization, western blot analysis and immunocytochemistry. The RPTC were treated with 100 μM H2O2 for 1 hr with or without 10μM HC030031, a TRPA1 specific antagonist. EGTA was used to the culture medium for depletion of extracellular calcium. Thereafter, AGT expression levels were evaluated by real-time RT-PCR, and TRPA1 expression levels and p38 MAPK activity were determined by western blot analyses. TRPA1 expression was observed in tubules of renal cortex, and the cultured PRTC expressed TRPA1 mRNA and protein. H2O2 increased AGT expression (1.54 ± 0.08, ratio to control) in RPTC. The AGT augmentation was suppressed by HC030031 (1.19 ± 0.05, ratio to control). Calcium depletion also resulted in attenuation of the AGT augmentation induced by H2O2. Although H2O2 induced phosphorylation of p38 MAPK, HC030031 did not inhibit the p38 MAPK activation. TRPA1 expression was increased by H2O2 under the experimental condition (1.90 ± 0.06, ratio to control). These results suggest that TRPA1 is expressed in RPTC, which contributes to H2O2-induced AGT augmentation via calcium-dependent but p38 MAPK-independent pathways. Furthermore, increase in TRPA1 expression by H2O2 likely facilitates the stimulation of AGT expression. Therefore, TRPA1 may play an important role in the progression of oxidative stress-associated renal injury and hypertension via the stimulation of AGT expression in RPTC.


Sign in / Sign up

Export Citation Format

Share Document