In vivo measurements of the contributions of protein synthesis and protein degradation in regulating cardiac pressure overload hypertrophy in the mouse

2012 ◽  
Vol 367 (1-2) ◽  
pp. 205-213 ◽  
Author(s):  
Paul J. McDermott ◽  
Catalin F. Baicu ◽  
Shaun R. Wahl ◽  
An O. Van Laer ◽  
Michael R. Zile
1992 ◽  
Vol 263 (5) ◽  
pp. H1537-H1545
Author(s):  
C. Delcayre ◽  
D. Klug ◽  
V. T. Nguyen ◽  
C. Mouas ◽  
B. Swynghedauw

Pressure overload in vivo induces an increase in cardiac protooncogene and stress protein expression that may initiate the long-term genetic changes observed in hypertrophy. To known whether mechanical stimulus is linked to specific gene transcription, expression of immediate early genes and synthesis of total proteins and myosin heavy chains (MHCs) were studied in beating and KCl-arrested isolated rat hearts perfused for 2 h under various coronary pressures. The main result of this study is that in the beating heart an augmentation of aortic pressure from 60 to 120 mmHg results in a pronounced enhancement of the synthesis of MHC (+59%) and of the expression of the beta-MHC isomyosin mRNA (iso-mRNA; +104%). Also, total protein synthesis and the amounts of poly-(A)+, c-fos, c-myc, and heat-shock protein HSP68 mRNAs were increased. To arrest the heart at 60 mmHg has no effect on total protein synthesis and on the amounts of poly(A)+, alpha-MHC and beta-MHC iso-mRNAs, and mRNAs coding for oncoproteins, but the synthesis of MHC decreased by 24%. By contrast with what we have observed in the beating heart, the augmentation of the coronary pressure in the arrested heart stimulates total protein synthesis and increases the amount of poly(A)+, c-fos, c-myc, and HSP68 mRNAs but has no effect on the expression of both MHC iso-mRNAs. In conclusion, the activation of myosin synthesis by high coronary pressure in this model has mainly a pretranslational origin when the heart is beating.(ABSTRACT TRUNCATED AT 250 WORDS)


2009 ◽  
Vol 107 (3) ◽  
pp. 645-654 ◽  
Author(s):  
S. M. Phillips ◽  
E. I. Glover ◽  
M. J. Rennie

Unloading-induced atrophy is a relatively uncomplicated form of muscle loss, dependent almost solely on the loss of mechanical input, whereas in disease states associated with inflammation (cancer cachexia, AIDS, burns, sepsis, and uremia), there is a procatabolic hormonal and cytokine environment. It is therefore predictable that muscle loss mainly due to disuse alone would be governed by mechanisms somewhat differently from those in inflammatory states. We suggest that in vivo measurements made in human subjects using arterial-venous balance, tracer dilution, and tracer incorporation are dynamic and thus robust by comparison with static measurements of mRNA abundance and protein expression and/or phosphorylation in human muscle. In addition, measurements made with cultured cells or in animal models, all of which have often been used to infer alterations of protein turnover, appear to be different from results obtained in immobilized human muscle in vivo. In vivo measurements of human muscle protein turnover in disuse show that the primary variable that changes facilitating the loss of muscle mass is protein synthesis, which is reduced in both the postabsorptive and postprandial states; muscle proteolysis itself appears not to be elevated. The depressed postprandial protein synthetic response (a phenomenon we term “anabolic resistance”) may even be accompanied by a diminished suppression of proteolysis. We therefore propose that most of the loss of muscle mass during disuse atrophy can be accounted for by a depression in the rate of protein synthesis. Thus the normal diurnal fasted-to-fed cycle of protein balance is disrupted and, by default, proteolysis becomes dominant but is not enhanced.


1986 ◽  
Vol 250 (2) ◽  
pp. E114-E120 ◽  
Author(s):  
A. J. Morton ◽  
D. F. Goldspink

The adaptive growth and protein turnover of the rat uterus were studied during the 21 days of gestation and up to 3 days after parturition. Despite large increases (13-fold) in uterine size during gestation, the fractional rate of protein synthesis (measured in vivo) remained unchanged when compared with nonpregnant tissue values of 44 +/- 5%/day. However, decreases were found in the rate of protein breakdown after implantation (i.e., 75% on day 7 and 28% on day 11) and in the activity of cathepsin D (i.e., 33 and 85% on days 8 and 16 of gestation). Changes in the degradative processes would therefore appear to be primarily responsible for the massive uterine growth during pregnancy. In contrast to the uterus the fractional rates of synthesis in the placenta and fetus progressively decreased during gestation. After parturition the uterus rapidly returned to its normal size by a combination of cellular atrophy and cell loss. After 2 days, a complementary decrease in the fractional rate of synthesis (30%) and an increase in protein degradation (2-fold) explained the process of involution.


1979 ◽  
Vol 178 (3) ◽  
pp. 725-731 ◽  
Author(s):  
R D Conde

The effect of hypophysectomy on the protein metabolism of the liver in vivo was studied. Fractional rates of protein synthesis and degradation were determined in the livers of normal and hypophysectomized rats. Synthesis was measured after the injection of massive amounts of radioactive leucine. Degradation was estimated either as the balance between synthesis and accumulation of stable liver proteins or from the disappearance of radioactivity from the proteins previously labelled by the injection of NaH14CO3. The results indicate that: (1) hypophysectomy diminishes the capacity of the liver to synthesize proteins in vivo, mainly of those that are exported as plasma proteins; (2) livers of both normal and hypophysectomized rats show identical protein-degradation rates, whereas plasma proteins are degraded slowly after hypophysectomy.


2016 ◽  
Vol 110 (3) ◽  
pp. 351a
Author(s):  
Ivan Volkov ◽  
Javier Aguirre ◽  
Martin Lindén ◽  
Johan Elf ◽  
Magnus Johansson

1984 ◽  
Vol 222 (2) ◽  
pp. 395-400 ◽  
Author(s):  
V R Preedy ◽  
D M Smith ◽  
N F Kearney ◽  
P H Sugden

Starvation of 300 g rats for 3 days decreased ventricular-muscle total protein content and total RNA content by 15 and 22% respectively. Loss of body weight was about 15%. In glucose-perfused working rat hearts in vitro, 3 days of starvation inhibited rates of protein synthesis in ventricles by about 40-50% compared with fed controls. Although the RNA/protein ratio was decreased by about 10%, the major effect of starvation was to decrease the efficiency of protein synthesis (rate of protein synthesis relative to RNA). Insulin stimulated protein synthesis in ventricles of perfused hearts from fed rats by increasing the efficiency of protein synthesis. In vivo, protein-synthesis rates and efficiencies in ventricles from 3-day-starved rats were decreased by about 40% compared with fed controls. Protein-synthesis rates and efficiencies in ventricles from fed rats in vivo were similar to values in vitro when insulin was present in perfusates. In vivo, starvation increased the rate of protein degradation, but decreased it in the glucose-perfused heart in vitro. This contradiction can be rationalized when the effects of insulin are considered. Rates of protein degradation are similar in hearts of fed animals in vivo and in glucose/insulin-perfused hearts. Degradation rates are similar in hearts of starved animals in vivo and in hearts perfused with glucose alone. We conclude that the rates of protein turnover in the anterogradely perfused rat heart in vitro closely approximate to the rates in vivo in absolute terms, and that the effects of starvation in vivo are mirrored in vitro.


1988 ◽  
Vol 255 (2) ◽  
pp. H325-H328 ◽  
Author(s):  
R. Nagai ◽  
R. B. Low ◽  
W. S. Stirewalt ◽  
N. R. Alpert ◽  
R. Z. Litten

We measured the rate of protein synthesis and total RNA content in the right ventricle (RV) at day 2 and day 4 after pulmonary artery constriction to determine the contributions of changes in capacity and efficiency of in vivo protein synthesis to pressure overload (PO) cardiac hypertrophy. A significant increase in the proportion of RV weight to total heart weight was observed at day 2 and day 4 when compared with untreated controls. The rate of protein synthesis was significantly higher at day 2 post-PO (0.31 +/- 0.06 day-1 or 30 +/- 5 mg.g RV-1.day-1, means +/- SD, P less than 0.05) as well as at day 4 (0.25 +/- 0.05 day-1 or 28 +/- 9 mg.g RV-1.day-1, P less than 0.05) than for untreated rabbits (0.15 +/- 0.03 day-1 or 17 +/- 4 mg.g RV-1.day-1). RNA content was significantly higher at day 2 (1.47 +/- 0.17 mg/g RV, P less than 0.05) than in controls (1.16 +/- 0.14 mg/g RV), whereas there was a slight but nonsignificant increase at day 4 (1.36 +/- 0.21 mg/g RV, P less than 0.1). The efficiency of protein synthesis (synthesis/RNA) per gram RV was significantly increased both at day 2 (20.5 +/- 2.2 g protein.g RNA-1.day-1, P less than 0.05) and day 4 (19.8 +/- 3.5 g protein.g RNA-1.day-1, P less than 0.05) compared with control (14.6 +/- 2.3 g protein.g RNA-1.day-1). The increase in efficiency appeared to be caused by pressure overload itself based on a comparison of 0-4 day data vs. data obtained from sham animals (P less than 0.05).


1999 ◽  
Vol 277 (6) ◽  
pp. H2176-H2184 ◽  
Author(s):  
Yoshitatsu Nagatomo ◽  
Blase A. Carabello ◽  
Masayoshi Hamawaki ◽  
Shintaro Nemoto ◽  
Takeshi Matsuo ◽  
...  

This study examined how translational mechanisms regulate the rate of cardiac protein synthesis during canine pressure overload in vivo. Acute aortic stenosis (AS) was produced by inflating a balloon catheter in the ascending aorta for 6 h; sustained AS was created by controlled banding of the ascending aorta. AS caused significant hypertrophy as reflected by increased left ventricular (LV) mass after 5 and 10 days. To monitor LV protein synthesis in vivo, myosin heavy chain (MHC) synthesis was measured by continuous infusion of radiolabeled leucine. Acute AS accelerated the rate of myosin synthesis without a corresponding increase in ribosomal RNA, indicating an increase in translational efficiency. Total MHC synthesis (mg MHC/LV per day) was significantly increased at 5 and 10 days of sustained AS. Total MHC degradation was not significantly altered at 5 days of AS but increased at 10 days of AS in concordance with a new steady state with respect to growth. Translational capacity (mg total RNA/LV) was significantly increased after 5 and 10 days of AS and was preceded by an increase in the rate of ribosome formation. MHC mRNA levels remained unchanged during AS. These findings demonstrate that cardiac protein synthesis is accelerated in response to pressure overload by an initial increase in translational efficiency, followed by an adaptive increase in translational capacity during sustained hypertrophic growth.


Sign in / Sign up

Export Citation Format

Share Document