The Accuracy of Temperature Measurements Based on an Analysis of the Energy Balance in the Radiation Receiver of an IR Device

2015 ◽  
Vol 58 (5) ◽  
pp. 544-549 ◽  
Author(s):  
E. V. Levin ◽  
A. Yu. Okunev
Author(s):  
Lionel Roques ◽  
Mickaël D. Chekroun ◽  
Michel Cristofol ◽  
Samuel Soubeyrand ◽  
Michael Ghil

We study parameter estimation for one-dimensional energy balance models with memory (EBMMs) given localized and noisy temperature measurements. Our results apply to a wide range of nonlinear, parabolic partial differential equations with integral memory terms. First, we show that a space-dependent parameter can be determined uniquely everywhere in the PDE's domain of definition D , using only temperature information in a small subdomain E ⊂ D . This result is valid only when the data correspond to exact measurements of the temperature. We propose a method for estimating a model parameter of the EBMM using more realistic, error-contaminated temperature data derived, for example, from ice cores or marine-sediment cores. Our approach is based on a so-called mechanistic-statistical model that combines a deterministic EBMM with a statistical model of the observation process. Estimating a parameter in this setting is especially challenging, because the observation process induces a strong loss of information. Aside from the noise contained in past temperature measurements, an additional error is induced by the age-dating method, whose accuracy tends to decrease with a sample's remoteness in time. Using a Bayesian approach, we show that obtaining an accurate parameter estimate is still possible in certain cases.


1994 ◽  
Vol 144 ◽  
pp. 315-321 ◽  
Author(s):  
M. G. Rovira ◽  
J. M. Fontenla ◽  
J.-C. Vial ◽  
P. Gouttebroze

AbstractWe have improved previous model calculations of the prominence-corona transition region including the effect of the ambipolar diffusion in the statistical equilibrium and energy balance equations. We show its influence on the different parameters that characterize the resulting prominence theoretical structure. We take into account the effect of the partial frequency redistribution (PRD) in the line profiles and total intensities calculations.


1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


1987 ◽  
Vol 48 (C7) ◽  
pp. C7-757-C7-760
Author(s):  
P. SPIBERG ◽  
C. CAHEN ◽  
P. DESCHAMPS

Author(s):  
B Otto ◽  
H Rochlitz ◽  
M Möhlig ◽  
L Burget ◽  
J Kampe ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document