Integrating cognitive and environmental influences on energy-balance related behaviour

Author(s):  
G. J. De Bruijn ◽  
S. Kremers ◽  
Mechelen W. Van ◽  
J. Brug
2015 ◽  
Vol 75 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Shaoyu Zhu ◽  
Jesse Eclarinal ◽  
Maria S. Baker ◽  
Ge Li ◽  
Robert A. Waterland

Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in energy balance regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mechanisms underlying such developmental programming of energy balance are poorly understood, limiting our ability to intervene. Most studies of developmental programming of energy balance have focused on persistent alterations in the regulation of energy intake; energy expenditure has been relatively underemphasised. In particular, very few studies have evaluated developmental programming of physical activity. The aim of this review is to summarise recent evidence that early environment may have a profound impact on establishment of individual propensity for physical activity. Recently, we characterised two different mouse models of developmental programming of obesity; one models fetal growth restriction followed by catch-up growth, and the other models early postnatal overnutrition. In both studies, we observed alterations in body-weight regulation that persisted to adulthood, but no group differences in food intake. Rather, in both cases, programming of energy balance appeared to be due to persistent alterations in energy expenditure and spontaneous physical activity (SPA). These effects were stronger in female offspring. We are currently exploring the hypothesis that developmental programming of SPA occurs via induced sex-specific alterations in epigenetic regulation in the hypothalamus and other regions of the central nervous system. We will summarise the current progress towards testing this hypothesis. Early environmental influences on establishment of physical activity are likely an important factor in developmental programming of energy balance. Understanding the fundamental underlying mechanisms in appropriate animal models will help determine whether early life interventions may be a practical approach to promote physical activity in man.


2008 ◽  
Vol 68 (1) ◽  
pp. 43-54 ◽  
Author(s):  
Thorkild I. A. Sørensen

Use of the energy balance equation for understanding the causation of obesity is discussed. Its basis on the thermodynamic laws is expressed in mathematical models for body-weight changes. Only a very small net energy surplus per time unit constitutes the energy deposition during weight gain, making measurements of its components difficult. The physical laws provide exact quantitative relationships between energy intake, energy expenditure and deposition of energy, but cannot disentangle the initiating and driving forces of the energy imbalance, which may also be an active storage of fat in adipose tissue. These and various other limitations of the energy balance model warrant cautiousness in using the model in studies of obesity causation. Weight gain may be self-promoting and mathematical feedback models allowing estimation of such effects show that they are realistic. Predisposition and susceptibility should be distinguished, and susceptibility as a modifiable predisposition, the genetic and environmental contribution to predisposition and its usefulness as targets for prevention and treatment are discussed. Current progress in unravelling genetic predisposition, the complex genetically-determined mechanisms, the slower progress in unravelling the environmental influences, the different nature of genetic and environmental influences, the possible pathways of environmental influences and the environmental influences as mediators of genetic effects are addressed. The evidence behind the prevailing concept of the ‘obesogenic’ environment is critically analysed. Finally, particular opportunities for the identification of the causes of the obesity epidemic by detailed analysis of an observed irregular development of the epidemic over long time periods are presented, and evidence for predisposition as a result of postnatal environmental influences is inferred from these studies.


1994 ◽  
Vol 144 ◽  
pp. 315-321 ◽  
Author(s):  
M. G. Rovira ◽  
J. M. Fontenla ◽  
J.-C. Vial ◽  
P. Gouttebroze

AbstractWe have improved previous model calculations of the prominence-corona transition region including the effect of the ambipolar diffusion in the statistical equilibrium and energy balance equations. We show its influence on the different parameters that characterize the resulting prominence theoretical structure. We take into account the effect of the partial frequency redistribution (PRD) in the line profiles and total intensities calculations.


1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


2015 ◽  
Vol 223 (3) ◽  
pp. 151-156 ◽  
Author(s):  
Nina Schweinfurth ◽  
Undine E. Lang

Abstract. In the development of new psychiatric drugs and the exploration of their efficacy, behavioral testing in mice has always shown to be an inevitable procedure. By studying the behavior of mice, diverse pathophysiological processes leading to depression, anxiety, and sickness behavior have been revealed. Moreover, laboratory research in animals increased at least the knowledge about the involvement of a multitude of genes in anxiety and depression. However, multiple new possibilities to study human behavior have been developed recently and improved and enable a direct acquisition of human epigenetic, imaging, and neurotransmission data on psychiatric pathologies. In human beings, the high influence of environmental and resilience factors gained scientific importance during the last years as the search for key genes in the development of affective and anxiety disorders has not been successful. However, environmental influences in human beings themselves might be better understood and controllable than in mice, where environmental influences might be as complex and subtle. The increasing possibilities in clinical research and the knowledge about the complexity of environmental influences and interferences in animal trials, which had been underestimated yet, question more and more to what extent findings from laboratory animal research translate to human conditions. However, new developments in behavioral testing of mice involve the animals’ welfare and show that housing conditions of laboratory mice can be markedly improved without affecting the standardization of results.


Sign in / Sign up

Export Citation Format

Share Document