Evaluating the Accuracy of Reconstruction of the Electrical and Geometric Parameters of Multilayer Dielectric Coatings by a Multifrequency Radio-Wave Method for Slow Surface Electromagnetic Waves

2020 ◽  
Vol 63 (8) ◽  
pp. 645-652
Author(s):  
A. I. Kaz’min ◽  
P. A. Fedjunin
2020 ◽  
pp. 51-58
Author(s):  
Aleksandr I. Kazmin ◽  
Pavel A. Fedjunin

One of the most important diagnostic problems multilayer dielectric materials and coatings is the development of methods for quantitative interpretation of the checkout results their electrophysical and geometric parameters. The results of a study of the potential informativeness of the multi-frequency radio wave method of surface electromagnetic waves during reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings are presented. The simulation model is presented that makes it possible to evaluate of the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings. The model takes into account the values of the electrophysical and geometric parameters of the coating, the noise level in the measurement data and the measurement bandwidth. The results of simulation and experimental investigations of reconstruction of the structure of relative permittivitties and thicknesses of single-layer and double-layer dielectric coatings with different thicknesses, with different values of the standard deviation (RMS) of the noise level in the measured attenuation coefficients of the surface slow electromagnetic wave are presented. Coatings based on the following materials were investigated: polymethyl methacrylate, F-4D PTFE, RO3010. The accuracy of reconstruction of the electrophysical parameters of the layers decreases with an increase in the number of evaluated parameters and an increase in the noise level. The accuracy of the estimates of the electrophysical parameters of the layers also decreases with a decrease in their relative permittivity and thickness. The results of experimental studies confirm the adequacy of the developed simulation model. The presented model allows for a specific measuring complex that implements the multi-frequency radio wave method of surface electromagnetic waves, to quantify the potential possibilities for the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric materials and coatings. Experimental investigations and simulation results of a multilayer dielectric coating demonstrated the theoretical capabilities gained relative error permittivity and thickness of the individual layers with relative error not greater than 10 %, with a measurement bandwidth of 1 GHz and RMS of noise level 0,003–0,004.


2020 ◽  
pp. 30-35
Author(s):  
V.K. Galaydych ◽  
A.E. Sporov ◽  
V.P. Olefir ◽  
N.A. Azarenkov

The possibilities of the slow surface electromagnetic waves propagation along the flat boundary of a metasurface with a dissipative dielectric are studied. The metasurface is a thin flat slab of metamaterial with simultaneously negative permittivity and permeability with "amplification". All media were assumed to be isotropic. Dispersion dependences are obtained for the eigenmodes of such a waveguide structure. The possibility of full compensation of the energy losses of surface waves by the appropriate choice of the “gains” values is demonstrated.


2020 ◽  
Vol 86 (2) ◽  
pp. 37-43
Author(s):  
A. I. Kaz’min ◽  
P. A. Fedyunin

The development of modern engineering is inextricably linked with the development of the new types of multilayer dielectric materials. Existing radio wave methods for monitoring interlayer defects in such materials exhibit low accuracy in reconstructing the geometric parameters of defects. The results of studying extended interlayer defects in the three-layer coating consisting of polymethyl methacrylate, F-4D PTFE, and semi-hard rubber by the method of surface electromagnetic waves are presented. The method is based on the solution of inverse problems in the reconstruction of the geometric parameters of extended interlayer defects of special multilayer materials and coatings from the frequency dependence of the attenuation coefficient of the field of a slow surface electromagnetic wave. Unlike the methods that make use from the complex reflection coefficient we proposed to increase the accuracy of the reconstruction of the geometric parameters of extended interlayer defects taking into account the linear frequency dependence of the attenuation coefficient as well as reducing the number of fixed measurement frequencies. Moreover, the determination procedure is rather simple, since only the field strength of the surface electromagnetic wave is measured, and there is no need for phase measurements. Experimental data obtained on a multifrequency measuring complex in the range of 10 – 11 GHz were used for reconstruction of the interlayer defects in the coating under study. The developed method provided a relative error of thickness estimation below 10%. The proposed method approach can be used in studying multilayer dielectric coatings on the metal for detection of delamination in the lack of glue or poor adhesion between the layers. The developed method is also suitable for control of the defects in semiconductors, ferrite and composite materials.


Author(s):  
A. D. Karinskiy ◽  
N. M. Kuznetsov

It is known that in the insulator the area that has the main influence on the propagation of electromagnetic waves,is determined by the radius of the first Fresnel zone. But rocks are conductive medium. Examples of the results of calculations have been given, illustrating which area of the conducting space can have a significant impact on the re sults of the radio-wave method. In the given approach, each element A Vi of a conducting space, differing in electrical parameters from all other elements, is a source of a secondary electromagnetic field, similar to the field of an alternating electric dipole. The results of mathematical modeling can help to determine which area of the conducting medium under certain conditions has the main influence on the results of radio wave method. Simulation results can determine which region of the conductive medium has a major influence on the results of radio-wave method.


1984 ◽  
Vol 45 (C5) ◽  
pp. C5-167-C5-178
Author(s):  
A. J. Sievers ◽  
Z. Schlesinger ◽  
Y. J. Chabal

Sign in / Sign up

Export Citation Format

Share Document