Climate change impact and potential adaptation strategies under alternate climate scenarios for yam production in the sub-humid savannah zone of West Africa

2015 ◽  
Vol 21 (6) ◽  
pp. 955-968 ◽  
Author(s):  
Amit Kumar Srivastava ◽  
Thomas Gaiser ◽  
Frank Ewert
2015 ◽  
Vol 10 (7) ◽  
pp. 075005 ◽  
Author(s):  
Marcello Donatelli ◽  
Amit Kumar Srivastava ◽  
Gregory Duveiller ◽  
Stefan Niemeyer ◽  
Davide Fumagalli

2021 ◽  
Vol 34 ◽  
pp. 100805
Author(s):  
Alfred Awotwi ◽  
Thompson Annor ◽  
Geophrey K. Anornu ◽  
Jonathan Arthur Quaye-Ballard ◽  
Jacob Agyekum ◽  
...  

2015 ◽  
Vol 153 (5) ◽  
pp. 798-824 ◽  
Author(s):  
Y. BAO ◽  
G. HOOGENBOOM ◽  
R. W. McCLENDON ◽  
J. O. PAZ

SUMMARYDue to the potential impact of climate change and climate variability on rainfed production systems, both farmers and policy makers will have to rely more on short- and long-term yield projections. The goal of this study was to develop a procedure for calibrating the Cropping System Model (CSM)-CROPGRO-Soybean model for six cultivars, to determine the potential impact of climate change on rainfed soybean for five locations in Georgia, USA, and to provide recommendations for potential adaptation strategies for soybean production in Georgia and other south-eastern states. The Genotype Coefficient Calculator (GENCALC) software package was applied for calibration of the soybean cultivar coefficients using variety trial data. The root mean square error (RMSE) between observed and simulated grain yield ranged from 201 to 413 kg/ha for the six cultivars. Generally, the future climate scenarios showed an increase in temperature which caused a decrease in the number of days to maturity for all varieties and for all locations. This will benefit late-planted soybean production slightly, while the increase in precipitation and carbon dioxide (CO2) concentration will result in a yield increase. This was the highest for Calhoun and Williamson and ranged from 31 to 49% for the climate change projections for 2050. However, a large reduction in precipitation caused a decrease in yield for Midville, especially based on the climate scenarios of the Global Climate Models (GCMs) Commonwealth Scientific and Industrial Research Organisation's model CSIRO-Mk3.0 and Geophysical Fluid Dynamics Laboratory's model GFDL-CM2.1. Overall, Calhoun, Williamson, Plains and Tifton will probably be more suitable for rainfed soybean production over the next 40 years than Midville. Farmers might shift to a later planting date, around 5 June, for the locations that were evaluated in the present study to avoid potential heat and drought stress during the summer months. The cultivars AG6702, AGS758RR and S80-P2 could be selected for rainfed soybean production since they had the highest rainfed yields among the six cultivars. In general, the present study showed that there are crop management options for soybean production in Georgia and the south-eastern USA that are adapted for the potential projected climate change conditions.


2019 ◽  
Vol 235 ◽  
pp. 104-117 ◽  
Author(s):  
Kokou Adambounou Amouzou ◽  
John P.A. Lamers ◽  
Jesse B. Naab ◽  
Christian Borgemeister ◽  
Paul L.G. Vlek ◽  
...  

Author(s):  
Yacouba Yira ◽  
Tariro Cynthia Mutsindikwa ◽  
Aymar Yaovi Bossa ◽  
Jean Hounkpè ◽  
Seyni Salack

Abstract. This study evaluates the impact of future climate change (CC) on the hydropower generation potential of the Bamboi catchment (Black Volta) in West Africa using a conceptual rainfall-runoff model (HBV light) and regional climate models (RCMs)–global climate models (GCMs). Two climate simulation datasets MPI-ESM-REMO (CORDEX) and GFDL-ESM2M-WRF (WASCAL) under RCP4.5 were applied to the validated hydrological model to simulate the catchment runoff. Based on reference and future simulated discharges, a theoretical 1.3 MW run of river hydro power plant was designed to evaluate the hydropower generation. Hydrological and hydropower generation changes were expressed as the relative difference between two future periods (2020–2049 and 2070–2099) and a reference period (1983–2005). The climate models' ensemble projected a mean annual precipitation increase by 8.8 % and 7.3 % and discharge increase by 11.4 % and 9.735 % for the 2020–2049 and 2070–2099 periods respectively (for bias corrected data). On the contrary an overall decrease of hydropower generation by −9.1 % and −8.4% for the 2020–2049 and 2070–2099 periods was projected respectively. The results indicate that projected increases in discharge should not solely be considered as leading to an increase in hydropower potential when prospecting climate change impact on hydropower.


2020 ◽  
Author(s):  
Anker Lajer Hojberg ◽  
Ida Bjørnholt Karlsson ◽  
Klaus Hinsby ◽  
Jacob Kidmose ◽  
Hélène Bessiere ◽  
...  

<p>Climate change (CC) already have widespread and significant impacts in Europe, which is expected to increase in the future. Groundwater plays a vital role for the land phase of the freshwater cycle and have the capability of buffering or enhancing the impact from extreme climate events causing droughts or floods, depending on the subsurface properties and the status of the system (dry/wet) prior to the climate event. Understanding and taking the hydrogeology into account is therefore essential in the assessment of climate change impacts.</p><p>The Geological Survey Organisations (GSOs) in Europe compile the necessary data and knowledge of the groundwater systems across Europe. The overall vision of the project “Tools for Assessment of ClimaTe change ImpacT on Groundwater and Adaptation Strategies – TACTIC” is to enhance the utilisation of these data and knowledge of the subsurface system in CC impact assessments, and the identification and analyses of potential adaptation strategies. To reach this vision, the objective of TACTIC is to contribute to the development of coherent and transparent assessments of CC impacts on groundwater and surface water, supporting improved EU policy making, and providing decision support for stakeholders and decision makers. To accomplish this, an infra-structure among European Geological Survey Organisations are developed in TACTIC to foster advancement and harmonisation of CC assessments, made up by: 1) The TACTIC Toolbox, consisting of relevant tools and methods for CC impact assessments, 2) TACTIC guidelines that will guide GSOs and other relevant stakeholders on the selection of appropriate tools and their use for producing comparable results, 3) The European Geological Data Infrastructure (EGDI) where data, reports and open-access papers will be stored  and made freely available  </p><p>The project is centred around 40 pilot studies covering a variety of CC challenges as well as different hydrogeological settings and different management systems found in Europe. The pilot activities are coordinated centrally in the project, to ensure that assessments, to the extent possible, are harmonised and can be compared across pilots. Synthesizing the experiences and results from the pilots will enable the development of a guideline and future roadmap, with the aim of 1) encouraging more GSOs to contribute in CC impact assessments 2) providing guidance to make the learning curve less steep and 3)ensuring that new assessments are comparable with assessments conducted in TACTIC.</p><p>TACTIC is part of the Horizon 2020 ERA-NET on Applied Geoscience (GeoERA) and together with the three other GeoERA groundwater projects, TACTIC will provide new and important data for further development of the European Geological Data Infrastructure (EGDI) with publicly available data enabling the development of EU-wide decision support systems for sustainable management of subsurface resources in a changing climate.</p><p>This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731166.</p>


Sign in / Sign up

Export Citation Format

Share Document