Development of a highly specific co-dominant marker for genotyping the Ph-3 (tomato late blight resistance) locus by comparing cultivated and wild ancestor species

2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Zhiyong Ren ◽  
Zeshuang You ◽  
Shoaib Munir ◽  
Yuyang Zhang ◽  
Hanxia Li ◽  
...  
2005 ◽  
Vol 18 (7) ◽  
pp. 722-729 ◽  
Author(s):  
Tae-Ho Park ◽  
Jack Gros ◽  
Anne Sikkema ◽  
Vivianne G. A. A. Vleeshouwers ◽  
Marielle Muskens ◽  
...  

Late blight, caused by Phytophthora infestans, is one of the most devastating diseases in cultivated potato. Breeding of new potato cultivars with high levels of resistance to P. infestans is considered the most durable strategy for future potato cultivation. In this study, we report the identification of a new late-blight resistance (R) locus from the wild potato species Solanum bulbocastanum. Using several different approaches, a high-resolution genetic map of the new locus was generated, delimiting Rpi-blb3 to a 0.93 cM interval on chromosome 4. One amplification fragment length polymorphism marker was identified that cosegregated in 1,396 progeny plants of an intraspecific mapping population with Rpi-blb3. For comparative genomics purposes, markers linked to Rpi-blb3 were tested in mapping populations used to map the three other late-blight R loci Rpi-abpt, R2, and R2-like also to chromosome 4. Marker order and allelic conservation suggest that Rpi-blb3, Rpiabpt, R2, and R2-like reside in the same R gene cluster on chromosome 4 and likely belong to the same gene family. Our findings provide novel insights in the evolution of R gene clusters conferring late-blight resistance in Solanum spp.


2009 ◽  
Vol 22 (6) ◽  
pp. 630-641 ◽  
Author(s):  
Anoma A. Lokossou ◽  
Tae-ho Park ◽  
Gert van Arkel ◽  
Marjon Arens ◽  
Carolien Ruyter-Spira ◽  
...  

In addition to the resistance to Phytophthora infestans (Rpi) genes Rpi-blb1 and Rpi-blb2, Solanum bulbocastanum appears to harbor Rpi-blb3 located at a major late blight resistance locus on LG IV, which also harbors Rpi-abpt, R2, R2-like, and Rpi-mcd1 in other Solanum spp. Here, we report the cloning and functional analyses of four Rpi genes, using a map-based cloning approach, allele-mining strategy, Gateway technology, and transient complementation assays in Nicotiana benthamiana. Rpi-blb3, Rpi-abpt, R2, and R2-like contain all signature sequences characteristic of leucine zipper nucleotide binding site leucine-rich repeat (LZ-NBS-LRR) proteins, and share amino-acid sequences 34.9% similar to RPP13 from Arabidopsis thaliana. The LRR domains of all four Rpi proteins are highly homologous whereas LZ and NBS domains are more polymorphic, those of R2 being the most divergent. Clear blocks of sequence affiliation between the four functional resistance proteins and those encoded by additional Rpi-blb3 gene homologs suggest exchange of LZ, NBS, and LRR domains, underlining the modular nature of these proteins. All four Rpi genes recognize the recently identified RXLR effector PiAVR2.


2005 ◽  
Vol 111 (3) ◽  
pp. 591-597 ◽  
Author(s):  
T. H. Park ◽  
V. G. A. A. Vleeshouwers ◽  
D. J. Huigen ◽  
E. A. G. van der Vossen ◽  
H. J. van Eck ◽  
...  

Author(s):  
Kamil Witek ◽  
Xiao Lin ◽  
Hari S Karki ◽  
Florian Jupe ◽  
Agnieszka I Witek ◽  
...  

AbstractLate blight caused by Phytophthora infestans greatly constrains potato production. Many Resistance (R) genes were cloned from wild Solanum species and/or introduced into potato cultivars by breeding. However, individual R genes have been overcome by P. infestans evolution; durable resistance remains elusive. We positionally cloned a new R gene, Rpi-amr1, from Solanum americanum, that encodes an NRC helper-dependent CC-NLR protein. Rpi-amr1 confers resistance in potato to all 19 P. infestans isolates tested. Using association genomics and long-read RenSeq, we defined eight additional Rpi-amr1 alleles from different S. americanum and related species. Despite only ∼90% identity between Rpi-amr1 proteins, all confer late blight resistance but differentially recognize Avramr1 orthologs and paralogs. We propose that Rpi-amr1 gene family diversity facilitates detection of diverse paralogs and alleles of the recognized effector, enabling broad-spectrum and durable resistance against P. infestans.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 998B-998 ◽  
Author(s):  
Monica J. Norby ◽  
Michael J. Havey

Phytophthorainfestans is the casual agent of late blight and is a major threat to potato production worldwide. There are no curative control agents available and resistance genes offer promise in controlling late blight. To date, the primary source of late-blight resistance has been from hexaploid (6x) [4 Endosperm Balance Number (EBN)] Solanum demissum. Mexican diploid (2x) (1EBN) Solanum species possess a wealth of late-blight resistances, but have been neglected due to crossing barriers. Manipulation of EBN and ploidies should allow integration of 2x (1EBN) germplasm into cultivated potato. Synteny between late-blight resistance loci from Solanum species of disparate ploidies and EBNs may facilitate the identification of unique resistance alleles and loci. Isolate MSU96 (US8/A2) of P. infestans revealed a late-blight resistance locus (Rpi1) from 2x(1EBN) S. pinnatisectum (PI 253214) that mapped to chromosome seven (MGG 265:977-985). MSU96 was also avirulent on the late-blight differential R9-Hodgson 2573 (LB3), revealing the presence of the avirulence gene for R9 originating from S. demissum. To test the relationship between Rpi1 and R9, we evaluated a family segregating for R9 and revealed that it does not map to chromosome seven. The independent inheritance of R9 and Rpi1 indicates that Rpi1 is a unique resistance locus. We are conducting a variety of crossing schemes to introgress Rpi1 into cultivated potato.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nam Phuong Kieu ◽  
Marit Lenman ◽  
Eu Sheng Wang ◽  
Bent Larsen Petersen ◽  
Erik Andreasson

AbstractThe use of pathogen-resistant cultivars is expected to increase yield and decrease fungicide use in agriculture. However, in potato breeding, increased resistance obtained via resistance genes (R-genes) is hampered because R-gene(s) are often specific for a pathogen race and can be quickly overcome by the evolution of the pathogen. In parallel, susceptibility genes (S-genes) are important for pathogenesis, and loss of S-gene function confers increased resistance in several plants, such as rice, wheat, citrus and tomatoes. In this article, we present the mutation and screening of seven putative S-genes in potatoes, including two DMR6 potato homologues. Using a CRISPR/Cas9 system, which conferred co-expression of two guide RNAs, tetra-allelic deletion mutants were generated and resistance against late blight was assayed in the plants. Functional knockouts of StDND1, StCHL1, and DMG400000582 (StDMR6-1) generated potatoes with increased resistance against late blight. Plants mutated in StDND1 showed pleiotropic effects, whereas StDMR6-1 and StCHL1 mutated plants did not exhibit any growth phenotype, making them good candidates for further agricultural studies. Additionally, we showed that DMG401026923 (here denoted StDMR6-2) knockout mutants did not demonstrate any increased late blight resistance, but exhibited a growth phenotype, indicating that StDMR6-1 and StDMR6-2 have different functions. To the best of our knowledge, this is the first report on the mutation and screening of putative S-genes in potatoes, including two DMR6 potato homologues.


2013 ◽  
Vol 164 ◽  
pp. 9-16 ◽  
Author(s):  
Younghoon Park ◽  
Jihyun Hwang ◽  
Kwanghwan Kim ◽  
Jumsoon Kang ◽  
Byungsup Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document