Characterization of antifungal metabolites produced by Lactobacillus plantarum and Lactobacillus coryniformis isolated from rice rinsed water

2020 ◽  
Vol 47 (3) ◽  
pp. 1871-1881 ◽  
Author(s):  
Shazia Anwer Bukhari ◽  
Mahwish Salman ◽  
Muhammad Numan ◽  
Muhammad Rizwan Javed ◽  
Muhammad Zubair ◽  
...  
2016 ◽  
Vol 7 ◽  
Author(s):  
Yuan Y. Chen ◽  
Nuan Y. Liang ◽  
Jonathan M. Curtis ◽  
Michael G. Gänzle

Gene ◽  
1998 ◽  
Vol 215 (2) ◽  
pp. 371-379 ◽  
Author(s):  
Makiko Kakikawa ◽  
Nobukatsu Watanabe ◽  
Tatsuya Funawatashi ◽  
Masaya Oki ◽  
Hiroo Yasukawa ◽  
...  

2017 ◽  
Vol 246 ◽  
pp. 32-39 ◽  
Author(s):  
Susana Delgado ◽  
Ana Belén Flórez ◽  
Lucía Guadamuro ◽  
Baltasar Mayo

2012 ◽  
Vol 78 (24) ◽  
pp. 8719-8734 ◽  
Author(s):  
Mariángeles Briggiler Marcó ◽  
Josiane E. Garneau ◽  
Denise Tremblay ◽  
Andrea Quiberoni ◽  
Sylvain Moineau

ABSTRACTWe characterized twoLactobacillus plantarumvirulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eightL. plantarumstrains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least twoL. plantarumstrains, LMG9211 and WCSF1. The linear double-stranded DNA genome of thepac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that ofPediococcus damnosusphage clP1 and 77% identity with that ofL. plantarumphage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of thecos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those ofBacillusandLactobacillusstrains as well as phages. Some phage B2 genes were similar to ORFs fromL. plantarumphage LP65 of theMyoviridaefamily. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria.


2021 ◽  
Author(s):  
Amrutha Bindu ◽  
Lakshmi Devi

Abstract The focus of present study was to characterize antimicrobial peptide produced by probiotic cultures, Enterococcus durans DB-1aa (MCC4243), Lactobacillus plantarum Cu2-PM7 (MCC4246) and Lactobacillus fermentum Cu3-PM8 (MCC4233) against Staphylococus aureus and E. coli. The growth kinetic assay revealed 24 h of incubation to be optimum for bacteriocin production. The partially purified compound after ion-exchange chromatography was found to be thermoresistant and stable under wide range of pH. The compound was sensitive to proteinase-K, but resistant to trypsin, a-amylase and lipase. The apparent molecular weight of bacteriocin from MCC4243 and MCC4246 was found to be 3.5 KDa. Translated partial amino acid sequence of plnA gene in MCC4246 displayed 48 amino acid sequences showing 100% similarity with plantaricin A of Lactobacillus plantarum (WP_0036419). The sequence revealed 7 β sheets, 6 α sheets, 6 predicted coils and 9 predicted turns. The functions on cytoplasm show 10.82 isoelectric point and 48.6% hydrophobicity. The molecular approach of using Geneious Prime software and protein prediction data base for characterization of bacteriocin is novel and predicts “KSSAYSLQMGATAIKQVKKLFKKWGW” as peptide responsible for antimicrobial activity. The study provides information about broad spectrum bacteriocin in native probiotic culture and paves a way towards its application in functional foods as biopreservative agents.


Sign in / Sign up

Export Citation Format

Share Document