Demand look-ahead memory access scheduling for 3D graphics processing units

2013 ◽  
Vol 73 (3) ◽  
pp. 1391-1416
Author(s):  
Chih-Chieh Hsiao ◽  
Min-Jen Lo ◽  
Slo-Li Chu
2019 ◽  
Vol 9 (5) ◽  
pp. 947 ◽  
Author(s):  
Thaha Muhammed ◽  
Rashid Mehmood ◽  
Aiiad Albeshri ◽  
Iyad Katib

Sparse matrix-vector (SpMV) multiplication is a vital building block for numerous scientific and engineering applications. This paper proposes SURAA (translates to speed in arabic), a novel method for SpMV computations on graphics processing units (GPUs). The novelty lies in the way we group matrix rows into different segments, and adaptively schedule various segments to different types of kernels. The sparse matrix data structure is created by sorting the rows of the matrix on the basis of the nonzero elements per row ( n p r) and forming segments of equal size (containing approximately an equal number of nonzero elements per row) using the Freedman–Diaconis rule. The segments are assembled into three groups based on the mean n p r of the segments. For each group, we use multiple kernels to execute the group segments on different streams. Hence, the number of threads to execute each segment is adaptively chosen. Dynamic Parallelism available in Nvidia GPUs is utilized to execute the group containing segments with the largest mean n p r, providing improved load balancing and coalesced memory access, and hence more efficient SpMV computations on GPUs. Therefore, SURAA minimizes the adverse effects of the n p r variance by uniformly distributing the load using equal sized segments. We implement the SURAA method as a tool and compare its performance with the de facto best commercial (cuSPARSE) and open source (CUSP, MAGMA) tools using widely used benchmarks comprising 26 high n p r v a r i a n c e matrices from 13 diverse domains. SURAA outperforms the other tools by delivering 13.99x speedup on average. We believe that our approach provides a fundamental shift in addressing SpMV related challenges on GPUs including coalesced memory access, thread divergence, and load balancing, and is set to open new avenues for further improving SpMV performance in the future.


Author(s):  
Steven J. Lind ◽  
Benedict D. Rogers ◽  
Peter K. Stansby

This paper presents a review of the progress of smoothed particle hydrodynamics (SPH) towards high-order converged simulations. As a mesh-free Lagrangian method suitable for complex flows with interfaces and multiple phases, SPH has developed considerably in the past decade. While original applications were in astrophysics, early engineering applications showed the versatility and robustness of the method without emphasis on accuracy and convergence. The early method was of weakly compressible form resulting in noisy pressures due to spurious pressure waves. This was effectively removed in the incompressible (divergence-free) form which followed; since then the weakly compressible form has been advanced, reducing pressure noise. Now numerical convergence studies are standard. While the method is computationally demanding on conventional processors, it is well suited to parallel processing on massively parallel computing and graphics processing units. Applications are diverse and encompass wave–structure interaction, geophysical flows due to landslides, nuclear sludge flows, welding, gearbox flows and many others. In the state of the art, convergence is typically between the first- and second-order theoretical limits. Recent advances are improving convergence to fourth order (and higher) and these will also be outlined. This can be necessary to resolve multi-scale aspects of turbulent flow.


2021 ◽  
Vol 47 (2) ◽  
pp. 1-28
Author(s):  
Goran Flegar ◽  
Hartwig Anzt ◽  
Terry Cojean ◽  
Enrique S. Quintana-Ortí

The use of mixed precision in numerical algorithms is a promising strategy for accelerating scientific applications. In particular, the adoption of specialized hardware and data formats for low-precision arithmetic in high-end GPUs (graphics processing units) has motivated numerous efforts aiming at carefully reducing the working precision in order to speed up the computations. For algorithms whose performance is bound by the memory bandwidth, the idea of compressing its data before (and after) memory accesses has received considerable attention. One idea is to store an approximate operator–like a preconditioner–in lower than working precision hopefully without impacting the algorithm output. We realize the first high-performance implementation of an adaptive precision block-Jacobi preconditioner which selects the precision format used to store the preconditioner data on-the-fly, taking into account the numerical properties of the individual preconditioner blocks. We implement the adaptive block-Jacobi preconditioner as production-ready functionality in the Ginkgo linear algebra library, considering not only the precision formats that are part of the IEEE standard, but also customized formats which optimize the length of the exponent and significand to the characteristics of the preconditioner blocks. Experiments run on a state-of-the-art GPU accelerator show that our implementation offers attractive runtime savings.


2011 ◽  
Vol 28 (1) ◽  
pp. 1-14 ◽  
Author(s):  
W. van Straten ◽  
M. Bailes

Abstractdspsr is a high-performance, open-source, object-oriented, digital signal processing software library and application suite for use in radio pulsar astronomy. Written primarily in C++, the library implements an extensive range of modular algorithms that can optionally exploit both multiple-core processors and general-purpose graphics processing units. After over a decade of research and development, dspsr is now stable and in widespread use in the community. This paper presents a detailed description of its functionality, justification of major design decisions, analysis of phase-coherent dispersion removal algorithms, and demonstration of performance on some contemporary microprocessor architectures.


Sign in / Sign up

Export Citation Format

Share Document