Online sequential extreme learning machine-based co-training for dynamic moving cast shadow detection

2015 ◽  
Vol 75 (18) ◽  
pp. 11181-11197 ◽  
Author(s):  
Deepak Ghimire ◽  
Joonwhoan Lee
2019 ◽  
Vol 9 (23) ◽  
pp. 5042 ◽  
Author(s):  
Yugen Yi ◽  
Jiangyan Dai ◽  
Chengduan Wang ◽  
Jinkui Hou ◽  
Huihui Zhang ◽  
...  

Moving cast shadows of moving objects significantly degrade the performance of many high-level computer vision applications such as object tracking, object classification, behavior recognition and scene interpretation. Because they possess similar motion characteristics with their objects, moving cast shadow detection is still challenging. In this paper, we present a novel moving cast-shadow detection framework based on the extreme learning machine (ELM) to efficiently distinguish shadow points from the foreground object. First, according to the physical model of shadows, pixel-level features of different channels in different color spaces and region-level features derived from the spatial correlation of neighboring pixels are extracted from the foreground. Second, an ELM-based classification model is developed by labelled shadow and un-shadow points, which is able to rapidly distinguish the points in the new input whether they belong to shadows or not. Finally, to guarantee the integrity of shadows and objects for further image processing, a simple post-processing procedure is designed to refine the results, which also drastically improves the accuracy of moving shadow detection. Extensive experiments on two publicly common datasets including 13 different scenes demonstrate that the performance of the proposed framework is superior to representative state-of-the-art methods.


2016 ◽  
Author(s):  
Edgar Wellington Marques de Almeida ◽  
Mêuser Jorge da Silva Valença

Author(s):  
Yuancheng Li ◽  
Yaqi Cui ◽  
Xiaolong Zhang

Background: Advanced Metering Infrastructure (AMI) for the smart grid is growing rapidly which results in the exponential growth of data collected and transmitted in the device. By clustering this data, it can give the electricity company a better understanding of the personalized and differentiated needs of the user. Objective: The existing clustering algorithms for processing data generally have some problems, such as insufficient data utilization, high computational complexity and low accuracy of behavior recognition. Methods: In order to improve the clustering accuracy, this paper proposes a new clustering method based on the electrical behavior of the user. Starting with the analysis of user load characteristics, the user electricity data samples were constructed. The daily load characteristic curve was extracted through improved extreme learning machine clustering algorithm and effective index criteria. Moreover, clustering analysis was carried out for different users from industrial areas, commercial areas and residential areas. The improved extreme learning machine algorithm, also called Unsupervised Extreme Learning Machine (US-ELM), is an extension and improvement of the original Extreme Learning Machine (ELM), which realizes the unsupervised clustering task on the basis of the original ELM. Results: Four different data sets have been experimented and compared with other commonly used clustering algorithms by MATLAB programming. The experimental results show that the US-ELM algorithm has higher accuracy in processing power data. Conclusion: The unsupervised ELM algorithm can greatly reduce the time consumption and improve the effectiveness of clustering.


Sign in / Sign up

Export Citation Format

Share Document