User Power Behavior Similarity Clustering Based on Unsupervised Extreme Learning Machine Algorithm

Author(s):  
Yuancheng Li ◽  
Yaqi Cui ◽  
Xiaolong Zhang

Background: Advanced Metering Infrastructure (AMI) for the smart grid is growing rapidly which results in the exponential growth of data collected and transmitted in the device. By clustering this data, it can give the electricity company a better understanding of the personalized and differentiated needs of the user. Objective: The existing clustering algorithms for processing data generally have some problems, such as insufficient data utilization, high computational complexity and low accuracy of behavior recognition. Methods: In order to improve the clustering accuracy, this paper proposes a new clustering method based on the electrical behavior of the user. Starting with the analysis of user load characteristics, the user electricity data samples were constructed. The daily load characteristic curve was extracted through improved extreme learning machine clustering algorithm and effective index criteria. Moreover, clustering analysis was carried out for different users from industrial areas, commercial areas and residential areas. The improved extreme learning machine algorithm, also called Unsupervised Extreme Learning Machine (US-ELM), is an extension and improvement of the original Extreme Learning Machine (ELM), which realizes the unsupervised clustering task on the basis of the original ELM. Results: Four different data sets have been experimented and compared with other commonly used clustering algorithms by MATLAB programming. The experimental results show that the US-ELM algorithm has higher accuracy in processing power data. Conclusion: The unsupervised ELM algorithm can greatly reduce the time consumption and improve the effectiveness of clustering.

2011 ◽  
pp. 24-32 ◽  
Author(s):  
Nicoleta Rogovschi ◽  
Mustapha Lebbah ◽  
Younès Bennani

Most traditional clustering algorithms are limited to handle data sets that contain either continuous or categorical variables. However data sets with mixed types of variables are commonly used in data mining field. In this paper we introduce a weighted self-organizing map for clustering, analysis and visualization mixed data (continuous/binary). The learning of weights and prototypes is done in a simultaneous manner assuring an optimized data clustering. More variables has a high weight, more the clustering algorithm will take into account the informations transmitted by these variables. The learning of these topological maps is combined with a weighting process of different variables by computing weights which influence the quality of clustering. We illustrate the power of this method with data sets taken from a public data set repository: a handwritten digit data set, Zoo data set and other three mixed data sets. The results show a good quality of the topological ordering and homogenous clustering.


2021 ◽  
Vol 8 (10) ◽  
pp. 43-50
Author(s):  
Truong et al. ◽  

Clustering is a fundamental technique in data mining and machine learning. Recently, many researchers are interested in the problem of clustering categorical data and several new approaches have been proposed. One of the successful and pioneering clustering algorithms is the Minimum-Minimum Roughness algorithm (MMR) which is a top-down hierarchical clustering algorithm and can handle the uncertainty in clustering categorical data. However, MMR tends to choose the category with less value leaf node with more objects, leading to undesirable clustering results. To overcome such shortcomings, this paper proposes an improved version of the MMR algorithm for clustering categorical data, called IMMR (Improved Minimum-Minimum Roughness). Experimental results on actual data sets taken from UCI show that the IMMR algorithm outperforms MMR in clustering categorical data.


2021 ◽  
pp. 1-18
Author(s):  
Angeliki Koutsimpela ◽  
Konstantinos D. Koutroumbas

Several well known clustering algorithms have their own online counterparts, in order to deal effectively with the big data issue, as well as with the case where the data become available in a streaming fashion. However, very few of them follow the stochastic gradient descent philosophy, despite the fact that the latter enjoys certain practical advantages (such as the possibility of (a) running faster than their batch processing counterparts and (b) escaping from local minima of the associated cost function), while, in addition, strong theoretical convergence results have been established for it. In this paper a novel stochastic gradient descent possibilistic clustering algorithm, called O- PCM 2 is introduced. The algorithm is presented in detail and it is rigorously proved that the gradient of the associated cost function tends to zero in the L 2 sense, based on general convergence results established for the family of the stochastic gradient descent algorithms. Furthermore, an additional discussion is provided on the nature of the points where the algorithm may converge. Finally, the performance of the proposed algorithm is tested against other related algorithms, on the basis of both synthetic and real data sets.


Author(s):  
Junjie Wu ◽  
Jian Chen ◽  
Hui Xiong

Cluster analysis (Jain & Dubes, 1988) provides insight into the data by dividing the objects into groups (clusters), such that objects in a cluster are more similar to each other than objects in other clusters. Cluster analysis has long played an important role in a wide variety of fields, such as psychology, bioinformatics, pattern recognition, information retrieval, machine learning, and data mining. Many clustering algorithms, such as K-means and Unweighted Pair Group Method with Arithmetic Mean (UPGMA), have been wellestablished. A recent research focus on clustering analysis is to understand the strength and weakness of various clustering algorithms with respect to data factors. Indeed, people have identified some data characteristics that may strongly affect clustering analysis including high dimensionality and sparseness, the large size, noise, types of attributes and data sets, and scales of attributes (Tan, Steinbach, & Kumar, 2005). However, further investigation is expected to reveal whether and how the data distributions can have the impact on the performance of clustering algorithms. Along this line, we study clustering algorithms by answering three questions: 1. What are the systematic differences between the distributions of the resultant clusters by different clustering algorithms? 2. How can the distribution of the “true” cluster sizes make impact on the performances of clustering algorithms? 3. How to choose an appropriate clustering algorithm in practice? The answers to these questions can guide us for the better understanding and the use of clustering methods. This is noteworthy, since 1) in theory, people seldom realized that there are strong relationships between the clustering algorithms and the cluster size distributions, and 2) in practice, how to choose an appropriate clustering algorithm is still a challenging task, especially after an algorithm boom in data mining area. This chapter thus tries to fill this void initially. To this end, we carefully select two widely used categories of clustering algorithms, i.e., K-means and Agglomerative Hierarchical Clustering (AHC), as the representative algorithms for illustration. In the chapter, we first show that K-means tends to generate the clusters with a relatively uniform distribution on the cluster sizes. Then we demonstrate that UPGMA, one of the robust AHC methods, acts in an opposite way to K-means; that is, UPGMA tends to generate the clusters with high variation on the cluster sizes. Indeed, the experimental results indicate that the variations of the resultant cluster sizes by K-means and UPGMA, measured by the Coefficient of Variation (CV), are in the specific intervals, say [0.3, 1.0] and [1.0, 2.5] respectively. Finally, we put together K-means and UPGMA for a further comparison, and propose some rules for the better choice of the clustering schemes from the data distribution point of view.


2020 ◽  
Vol 10 (21) ◽  
pp. 7488
Author(s):  
Yutu Yang ◽  
Xiaolin Zhou ◽  
Ying Liu ◽  
Zhongkang Hu ◽  
Fenglong Ding

The deep learning feature extraction method and extreme learning machine (ELM) classification method are combined to establish a depth extreme learning machine model for wood image defect detection. The convolution neural network (CNN) algorithm alone tends to provide inaccurate defect locations, incomplete defect contour and boundary information, and inaccurate recognition of defect types. The nonsubsampled shearlet transform (NSST) is used here to preprocess the wood images, which reduces the complexity and computation of the image processing. CNN is then applied to manage the deep algorithm design of the wood images. The simple linear iterative clustering algorithm is used to improve the initial model; the obtained image features are used as ELM classification inputs. ELM has faster training speed and stronger generalization ability than other similar neural networks, but the random selection of input weights and thresholds degrades the classification accuracy. A genetic algorithm is used here to optimize the initial parameters of the ELM to stabilize the network classification performance. The depth extreme learning machine can extract high-level abstract information from the data, does not require iterative adjustment of the network weights, has high calculation efficiency, and allows CNN to effectively extract the wood defect contour. The distributed input data feature is automatically expressed in layer form by deep learning pre-training. The wood defect recognition accuracy reached 96.72% in a test time of only 187 ms.


Author(s):  
Ting Xie ◽  
Taiping Zhang

As a powerful unsupervised learning technique, clustering is the fundamental task of big data analysis. However, many traditional clustering algorithms for big data that is a collection of high dimension, sparse and noise data do not perform well both in terms of computational efficiency and clustering accuracy. To alleviate these problems, this paper presents Feature K-means clustering model on the feature space of big data and introduces its fast algorithm based on Alternating Direction Multiplier Method (ADMM). We show the equivalence of the Feature K-means model in the original space and the feature space and prove the convergence of its iterative algorithm. Computationally, we compare the Feature K-means with Spherical K-means and Kernel K-means on several benchmark data sets, including artificial data and four face databases. Experiments show that the proposed approach is comparable to the state-of-the-art algorithm in big data clustering.


2012 ◽  
Vol 2 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Ritu Vijay ◽  
Prerna Mahajan ◽  
Rekha Kandwal

Cluster analysis has been extensively used in machine learning and data mining to discover distribution patterns in the data. Clustering algorithms are generally based on a distance metric in order to partition the data into small groups such that data instances in the same group are more similar than the instances belonging to different groups. In this paper the authors have extended the concept of hamming distance for categorical data .As a data processing step they have transformed the data into binary representation. The authors have used proposed algorithm to group data points into clusters. The experiments are carried out on the data sets from UCI machine learning repository to analyze the performance study. They conclude by stating that this proposed algorithm shows promising result and can be extended to handle numeric as well as mixed data.


2020 ◽  
Vol 12 (23) ◽  
pp. 4007
Author(s):  
Kasra Rafiezadeh Shahi ◽  
Pedram Ghamisi ◽  
Behnood Rasti ◽  
Robert Jackisch ◽  
Paul Scheunders ◽  
...  

The increasing amount of information acquired by imaging sensors in Earth Sciences results in the availability of a multitude of complementary data (e.g., spectral, spatial, elevation) for monitoring of the Earth’s surface. Many studies were devoted to investigating the usage of multi-sensor data sets in the performance of supervised learning-based approaches at various tasks (i.e., classification and regression) while unsupervised learning-based approaches have received less attention. In this paper, we propose a new approach to fuse multiple data sets from imaging sensors using a multi-sensor sparse-based clustering algorithm (Multi-SSC). A technique for the extraction of spatial features (i.e., morphological profiles (MPs) and invariant attribute profiles (IAPs)) is applied to high spatial-resolution data to derive the spatial and contextual information. This information is then fused with spectrally rich data such as multi- or hyperspectral data. In order to fuse multi-sensor data sets a hierarchical sparse subspace clustering approach is employed. More specifically, a lasso-based binary algorithm is used to fuse the spectral and spatial information prior to automatic clustering. The proposed framework ensures that the generated clustering map is smooth and preserves the spatial structures of the scene. In order to evaluate the generalization capability of the proposed approach, we investigate its performance not only on diverse scenes but also on different sensors and data types. The first two data sets are geological data sets, which consist of hyperspectral and RGB data. The third data set is the well-known benchmark Trento data set, including hyperspectral and LiDAR data. Experimental results indicate that this novel multi-sensor clustering algorithm can provide an accurate clustering map compared to the state-of-the-art sparse subspace-based clustering algorithms.


Author(s):  
Jian Zhou ◽  
Qina Wang ◽  
C.-C. Hung ◽  
Xiajie Yi

Fuzzy clustering is a widely used approach for data classification by using the fuzzy set theory. The probability measure and the possibility measure are two popular measures which have been used in the fuzzy [Formula: see text]-means algorithm (FCM) and the possibilistic clustering algorithms (PCAs), respectively. However, the numerical experiments revealed that FCM and its derivatives lack the intuitive concept of degree of belongingness, and PCAs suffer from the “coincident problem” and cannot provide very stable results for some data sets. In this study, we propose a new clustering algorithm, called the credibilistic clustering algorithm (CCA), based on the credibility measure. The credibility measure provides some unique properties which can solve the “coincident problem” and noise issue compared with the probability measure and possibility measure. Based on some randomly generated data sets, experimental results compared with FCM and PCA show that CCA can deal with the “coincident problem” with good clustering results, and it is more robust to noise than PCA.


Sign in / Sign up

Export Citation Format

Share Document