Innovative image encryption scheme based on a new rapid hyperchaotic system and random iterative permutation

2018 ◽  
Vol 77 (23) ◽  
pp. 30841-30863 ◽  
Author(s):  
Hamdi Bouslehi ◽  
Hassene Seddik
Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 510
Author(s):  
Taiyong Li ◽  
Duzhong Zhang

Image security is a hot topic in the era of Internet and big data. Hyperchaotic image encryption, which can effectively prevent unauthorized users from accessing image content, has become more and more popular in the community of image security. In general, such approaches conduct encryption on pixel-level, bit-level, DNA-level data or their combinations, lacking diversity of processed data levels and limiting security. This paper proposes a novel hyperchaotic image encryption scheme via multiple bit permutation and diffusion, namely MBPD, to cope with this issue. Specifically, a four-dimensional hyperchaotic system with three positive Lyapunov exponents is firstly proposed. Second, a hyperchaotic sequence is generated from the proposed hyperchaotic system for consequent encryption operations. Third, multiple bit permutation and diffusion (permutation and/or diffusion can be conducted with 1–8 or more bits) determined by the hyperchaotic sequence is designed. Finally, the proposed MBPD is applied to image encryption. We conduct extensive experiments on a couple of public test images to validate the proposed MBPD. The results verify that the MBPD can effectively resist different types of attacks and has better performance than the compared popular encryption methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Riguang Lin ◽  
Sheng Li

This research proposes a new image encryption scheme based on Lorenz hyperchaotic system and Rivest–Shamir–Adleman (RSA) algorithm. Firstly, the initial values of the Lorenz hyperchaotic system are generated by RSA algorithm, and the key stream is produced iteratively. In order to change the position and gray value of the pixel, the image data are hidden by additive mode diffusion. Secondly, the diffusion image matrix is reshaped into a one-dimensional image matrix, which is confused without repetition to hide the image data again. Then, the finite field diffusion algorithm is executed to realize the third hiding of the image information. In order to diffuse the pixel information into the entire cipher image, the additive mode diffusion algorithm needs to be looped twice. Finally, the cipher image can be obtained. The experimental results prove that the image encryption scheme proposed in this research is effective and has strong antiattack and key sensitivity. Moreover, the security of this encryption scheme relies on the RSA algorithm, which has high security.


2021 ◽  
Vol 31 (07) ◽  
pp. 2150099
Author(s):  
Dengwei Yan ◽  
Lidan Wang ◽  
Shukai Duan ◽  
Jiahao Chen

Memristor, as a nonlinear element in nanometer size, is feasible to generate chaotic signals. Especially, it can improve the randomness of the signals and the complexity of chaotic systems. A novel multiscroll hyperchaotic system based on the flux-controlled memristor is designed. Its twin system with a different topological structure is obtained by varying only the flux variable of the memristor, which is a considerable difference from other chaotic systems existing in the literature. Scroll numbers of the proposed system and its twin, especially, are sensitive to the system parameters. To further investigate the characteristics of the system and its twin, their behaviors with respect to the strengths of the memristor, simulation time and coexistence of multiscroll hyperchaotic attractors are analyzed. Moreover, complex dynamical behaviors of the system and its twin are analyzed by phase diagrams, Poincaré cross-sections, Lyapunov indexes, power spectra, 0-1 test diagrams, and time series. Finally, a novel image encryption scheme is proposed based on the system and its twin. The system and its twin have independent key spaces, and the proposed algorithm makes them have an intersection, which greatly improves the key spaces. In addition, the security and reliability of the image encryption algorithm are demonstrated by different security analysis methods, including correlation analysis, robustness analysis and information entropy test. The results of all experiments prove that the proposed image encryption scheme is superior to other existing ones.


Sign in / Sign up

Export Citation Format

Share Document