Texture features’ based classification of MR images of normal and herniated intervertebral discs

2018 ◽  
Vol 79 (21-22) ◽  
pp. 15171-15190 ◽  
Author(s):  
Bazila Hashia ◽  
Ajaz Hussain Mir

Brain tumor Detection is a primary concern in today’s life. So a computer aided technology must be implemented for an accurate detection and identification of brain tumor. The tumor can be detected using various classification techniques from brain MR Images. In this paper segmentation process is being done using K means Clustering technique and Binary Thresholding, the features from the images are then extracted using GLCM where six texture features are extracted and SVM Classifier is being used for classification of the images. This proposed method shows an accuracy of 97.12%.


Author(s):  
Yashpal Jitarwal ◽  
Tabrej Ahamad Khan ◽  
Pawan Mangal

In earlier times fruits were sorted manually and it was very time consuming and laborious task. Human sorted the fruits of the basis of shape, size and color. Time taken by human to sort the fruits is very large therefore to reduce the time and to increase the accuracy, an automatic classification of fruits comes into existence.To improve this human inspection and reduce time required for fruit sorting an advance technique is developed that accepts information about fruits from their images, and is called as Image Processing Technique.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Pyo Kim ◽  
Jonghoon Kim ◽  
Hyemin Jang ◽  
Jaeho Kim ◽  
Sung Hoon Kang ◽  
...  

AbstractPredicting amyloid positivity in patients with mild cognitive impairment (MCI) is crucial. In the present study, we predicted amyloid positivity with structural MRI using a radiomics approach. From MR images (including T1, T2 FLAIR, and DTI sequences) of 440 MCI patients, we extracted radiomics features composed of histogram and texture features. These features were used alone or in combination with baseline non-imaging predictors such as age, sex, and ApoE genotype to predict amyloid positivity. We used a regularized regression method for feature selection and prediction. The performance of the baseline non-imaging model was at a fair level (AUC = 0.71). Among single MR-sequence models, T1 and T2 FLAIR radiomics models also showed fair performances (AUC for test = 0.71–0.74, AUC for validation = 0.68–0.70) in predicting amyloid positivity. When T1 and T2 FLAIR radiomics features were combined, the AUC for test was 0.75 and AUC for validation was 0.72 (p vs. baseline model < 0.001). The model performed best when baseline features were combined with a T1 and T2 FLAIR radiomics model (AUC for test = 0.79, AUC for validation = 0.76), which was significantly better than those of the baseline model (p < 0.001) and the T1 + T2 FLAIR radiomics model (p < 0.001). In conclusion, radiomics features showed predictive value for amyloid positivity. It can be used in combination with other predictive features and possibly improve the prediction performance.


1997 ◽  
Vol 38 (5) ◽  
pp. 855-862 ◽  
Author(s):  
P. Hochbergs ◽  
G. Eckervall ◽  
H. Wingstrand ◽  
N. Egund ◽  
K. Jonsson

Purpose: By means of MR imaging, to determine signal abnormalities in the femoral epiphysis; to determine their location, extent and restitution over time; and to correlate these findings to the Catterall radiological classification. Material and Methods: A total of 247 MR images in 86 patients (101 hips) with Legg-CalvC-Perthes disease were examined. The MR images were taken in the coronal plane, and the images through the center of the femoral head were used for this study. Results: T1-weighted images proved as good as T2-weighted images for the MR evaluation of the extent of the necrosis. In almost every case, the central-cranial part of the epiphysis showed a low initial signal. In Catterall group I, the medial part was never involved. In Catterall III and IV, almost the entire epiphysis showed signal changes. In the period 3–6 years after diagnosis, we still found signal changes in the epiphysis in some hips but there was no correlation with the Catterall classification. After 6 years, the epiphysis showed normal signal intensity in MR imaging. In T1-weighted images, Gd-enhancement occurred in the peripheral regions in the early stages of the disease. The central part of the epiphysis became more enhanced over time and peaked in the period 1–3 years after diagnosis. Conclusion: MR is a valuable modality for monitoring changes in the femoral epiphysis. We propose a new classification of the extent and pattern of epiphyseal bone-marrow abnormalities based on the 4 zones most commonly observed in MR imaging.


Sign in / Sign up

Export Citation Format

Share Document