Deep learning convolutional neural network (CNN) With Gaussian mixture model for predicting pancreatic cancer

2019 ◽  
Vol 79 (15-16) ◽  
pp. 10233-10247 ◽  
Author(s):  
Kaushik Sekaran ◽  
P. Chandana ◽  
N. Murali Krishna ◽  
Seifedine Kadry
2020 ◽  
Author(s):  
Chun Dong Xu ◽  
Jing Zhou ◽  
Dong Wen Ying ◽  
Lei Jing Hou ◽  
Qing Hua Long

Abstract Background: Heart sound segmentation is a long-standing problem in heart analysis, and it is mainly caused by noise interference and diversification of heart sounds. Faced with the challenging of heart sound segmentation, a more applicable segmentation model was studied. Methods: In this process, the optimal modified Log-spectral amplitude and wavelet were used to suppress the noise in the heart sound, and used the duration-dependent hidden Markov model based on personalized Gaussian mixture model (PGMM-DHMM) to segment the fundamental heart sound (FHS) and the non-fundamental heart sound (non-FHS). Then used the optimized Mel frequency cepstral coefficient (MFCC) to realize the classification of S1 and S2 heart sound frames through the Convolutional neural network (CNN) classifier, which can avoid the errors caused by the ambiguity of the time domain features. Results: PGMM-DHMM can segment FHS more effectively, and the accuracy is 94.3%. The CNN classifier obtained the best results in the S1 and S2 classifications, the accuracy is 90.92%, the precision of S1 is 90.76%, the recall is 91.05%, the F-measure is 90.9%, and the precision of S2 is 91.07%, the recall is 90.79%, the F-measure is 90.93%. The final segmentation accuracy is 92.92%. In addition, the experimental results further indicate that CNN has more robust performance when classifying abnormal S1 and abnormal S2. Conclusions: The PGMM-DHMM model can better segment FHS and Non-FHS. The optimization of MFCC improves the classification effect of S1 and S2, and the improvement effect by the CNN classifier is significant, especially for abnormal heart sounds. The proposed algorithm is better than other algorithms at this stage.


2020 ◽  
Author(s):  
Chun Dong Xu ◽  
Jing Zhou ◽  
Dong Wen Ying ◽  
Lei Jing Hou ◽  
Qing Hua Long

Abstract Background: Heart sound segmentation is a long-standing problem in heart analysis, and it is mainly caused by noise interference and diversification of heart sounds. Faced with the challenging of heart sound segmentation, a more applicable segmentation model was studied. Methods: In this process, the optimal modified Log-spectral amplitude and wavelet were used to suppress the noise in the heart sound, and used the duration-dependent hidden Markov model based on personalized Gaussian mixture model (PGMM-DHMM) to segment the fundamental heart sound (FHS) and the non-fundamental heart sound (non-FHS). Then used the optimized Mel frequency cepstral coefficient (MFCC) to realize the classification of S1 and S2 heart sound frames through the Convolutional neural network (CNN) classifier, which can avoid the errors caused by the ambiguity of the time domain features. Results: PGMM-DHMM can segment FHS more effectively, and the accuracy is 94.3%. The CNN classifier obtained the best results in the S1 and S2 classifications, the accuracy is 90.92%, the precision of S1 is 90.76%, the recall is 91.05%, the F-measure is 90.9%, and the precision of S2 is 91.07%, the recall is 90.79%, the F-measure is 90.93%. The final segmentation accuracy is 92.92%. In addition, the experimental results further indicate that CNN has more robust performance when classifying abnormal S1 and abnormal S2. Conclusions: The PGMM-DHMM model can better segment FHS and Non-FHS. The optimization of MFCC improves the classification effect of S1 and S2, and the improvement effect by the CNN classifier is significant, especially for abnormal heart sounds. The proposed algorithm is better than other algorithms at this stage.


Detecting vehicle motions are a progressively significant part in road surveillance and Traffic organizing systems. This paper presents a new Deep Gaussian based mixture model that predicts accurate in detecting vehicle motions. Although the existing arrangements based on conventional Gaussian mixture model which is limited in insufficient of many distinct points which eliminate covariance and solutions relative to infinite likelihood. In the proposed scheme, the deep learning neural network is used for including the more points with nested mixture models. To overcome the effects of adding more points the modification achieved in architecture development. The validation of proposed scheme is achieved with real-time videos and process with scikit learn based model.


2021 ◽  
Vol 11 (7) ◽  
pp. 3138
Author(s):  
Mingchi Zhang ◽  
Xuemin Chen ◽  
Wei Li

In this paper, a deep neural network hidden Markov model (DNN-HMM) is proposed to detect pipeline leakage location. A long pipeline is divided into several sections and the leakage occurs in different section that is defined as different state of hidden Markov model (HMM). The hybrid HMM, i.e., DNN-HMM, consists of a deep neural network (DNN) with multiple layers to exploit the non-linear data. The DNN is initialized by using a deep belief network (DBN). The DBN is a pre-trained model built by stacking top-down restricted Boltzmann machines (RBM) that compute the emission probabilities for the HMM instead of Gaussian mixture model (GMM). Two comparative studies based on different numbers of states using Gaussian mixture model-hidden Markov model (GMM-HMM) and DNN-HMM are performed. The accuracy of the testing performance between detected state sequence and actual state sequence is measured by micro F1 score. The micro F1 score approaches 0.94 for GMM-HMM method and it is close to 0.95 for DNN-HMM method when the pipeline is divided into three sections. In the experiment that divides the pipeline as five sections, the micro F1 score for GMM-HMM is 0.69, while it approaches 0.96 with DNN-HMM method. The results demonstrate that the DNN-HMM can learn a better model of non-linear data and achieve better performance compared to GMM-HMM method.


2021 ◽  
Vol 11 (11) ◽  
pp. 5213
Author(s):  
Chin-Shiuh Shieh ◽  
Wan-Wei Lin ◽  
Thanh-Tuan Nguyen ◽  
Chi-Hong Chen ◽  
Mong-Fong Horng ◽  
...  

DDoS (Distributed Denial of Service) attacks have become a pressing threat to the security and integrity of computer networks and information systems, which are indispensable infrastructures of modern times. The detection of DDoS attacks is a challenging issue before any mitigation measures can be taken. ML/DL (Machine Learning/Deep Learning) has been applied to the detection of DDoS attacks with satisfactory achievement. However, full-scale success is still beyond reach due to an inherent problem with ML/DL-based systems—the so-called Open Set Recognition (OSR) problem. This is a problem where an ML/DL-based system fails to deal with new instances not drawn from the distribution model of the training data. This problem is particularly profound in detecting DDoS attacks since DDoS attacks’ technology keeps evolving and has changing traffic characteristics. This study investigates the impact of the OSR problem on the detection of DDoS attacks. In response to this problem, we propose a new DDoS detection framework featuring Bi-Directional Long Short-Term Memory (BI-LSTM), a Gaussian Mixture Model (GMM), and incremental learning. Unknown traffic captured by the GMM are subject to discrimination and labeling by traffic engineers, and then fed back to the framework as additional training samples. Using the data sets CIC-IDS2017 and CIC-DDoS2019 for training, testing, and evaluation, experiment results show that the proposed BI-LSTM-GMM can achieve recall, precision, and accuracy up to 94%. Experiments reveal that the proposed framework can be a promising solution to the detection of unknown DDoS attacks.


Sign in / Sign up

Export Citation Format

Share Document