scholarly journals On design sensitivities in the structural analysis and optimization of flexible multibody systems

Author(s):  
Alexander Held

AbstractThe structural analysis and optimization of flexible multibody systems become more and more popular due to the ability to efficiently compute gradients using sophisticated approaches such as the adjoint variable method and the adoption of powerful methods from static structural optimization. To drive the improvement of the optimization process, this work addresses the computation of design sensitivities for multibody systems with arbitrarily parameterized rigid and flexible bodies that are modeled using the floating frame of reference formulation. It is shown that it is useful to augment the body describing standard input data files by their design derivatives. In this way, a clear separation can be achieved between the body modeling and parameterization and the system simulation and analysis.

Author(s):  
Markus Burkhardt ◽  
Robert Seifried ◽  
Peter Eberhard

The symbolic modeling of flexible multibody systems is a challenging task. This is especially the case for complex-shaped elastic bodies, which are described by a numerical model, e.g., an FEM model. The kinematic and dynamic properties of the flexible body are in this case numerical and the elastic deformations are described with a certain number of local shape functions, which results in a large amount of data that have to be handled. Both attributes do not suggest the usage of symbolic tools to model a flexible multibody system. Nevertheless, there are several symbolic multibody codes that can treat flexible multibody systems in a very efficient way. In this paper, we present some of the modifications of the symbolic research code Neweul-M2 which are needed to support flexible bodies. On the basis of these modifications, the mentioned restrictions due to the numerical flexible bodies can be eliminated. Furthermore, it is possible to re-establish the symbolic character of the created equations of motion even in the presence of these solely numerical flexible bodies.


2007 ◽  
Vol 2 (4) ◽  
pp. 337-343 ◽  
Author(s):  
C. B. Drab ◽  
J. R. Haslinger ◽  
R. U. Pfau ◽  
G. Offner

Within the framework of the “floating frame of reference” formulation for dynamic flexible multibody systems, the separation of local and global motion is important. We compare the new approach with reference conditions as algebraic constraints with the classical one leading to a system of ordinary differential equations. The approach using reference conditions is motivated either from the need of keeping the error introduced when linearizing the elastic forces as small as possible (Buckens frame) or from minimizing the relative kinetic energy contained in the elastic deformations (Tisserand frame). The reference conditions impose algebraic constraints on the body level leading to a differential-algebraic equation (DAE) to be solved. The equivalence and the differences of the two approaches are shown. The index of the DAE system with reference conditions is shown to be either 2 or 1.


Author(s):  
Robert G. Winkler ◽  
Dimitrios Plakomytis ◽  
Johannes Gerstmayr

Light-weight structures and high-performance mechanical systems lead to an increasing amount of vibrations. In order to comply with standards in noise and vibration limits, the simulation of flexible multibody systems is inevitable. Due to the size of the finite element models of real-life mechanical systems, a model order reduction is necessary for the efficient simulation of such large scale flexible multibody systems. Currently, the most widely used technique for modelling and simulation of large scale flexible multibody systems is based on the Floating Frame of Reference Formulation (FFRF) of the modally reduced bodies. Recently, alternatives to the FFRF have been proposed, e.g. the Generalized Component Mode Synthesis (GCMS) which uses an absolute or inertial description of the modes. GCMS leads to a concise form of the equations of motion and a constant mass matrix. Within the context of the GCMS method, the rigid body motion is described with twelve coordinates while the deformation of the body is represented with nine coordinates for each flexible mode. The main drawback of the GCMS method is that the number of flexible coordinates is nine times higher as compared to the classic FFRF and therefore when more modes are needed the efficiency of the method can be impaired. Therefore, the objective of the present paper is the further reduction of the new flexible coordinates by means of a null space projection method. Null space methods have been extensively used in order to develop efficient integration algorithms for rigid bodies, flexible beams and shells; however their applicability to modally reduced flexible multibody systems has not been studied intensively. In the paper herein, we develop a new formulation for modally reduced flexible multibody systems which involves a projection onto the null space of properly defined (internal) constraint conditions imposed to the flexible coordinates. It is important to note that focus is put on the description of the projection in the continuous case rather than the discrete which will be addressed in later developments. The proposed formulation is derived in great detail and it is shown that the simple form of the equations of motion of the GCMS method is almost retained. Finally, the applicability and performance of the method is assessed by means of a numerical example.


2013 ◽  
Vol 30 (1) ◽  
pp. 13-35 ◽  
Author(s):  
Maria Augusta Neto ◽  
Jorge A. C. Ambrósio ◽  
Luis M. Roseiro ◽  
A. Amaro ◽  
C. M. A. Vasques

Sign in / Sign up

Export Citation Format

Share Document