scholarly journals Implementation of Rock Typing on Waterflooding Process During Secondary Recovery in Oil Reservoirs: A Case Study, El Morgan Oil Field, Gulf of Suez, Egypt

Author(s):  
Ahmed E. Radwan ◽  
Bassem S. Nabawy ◽  
Ahmed A. Kassem ◽  
Walid S. Hussein

AbstractWaterflooding is one of the most common secondary recovery methods in the oil and gas industry. Globally, this process sometimes suffers a technical failure and inefficiency. Therefore, a better understanding of geology, reservoir characteristics, rock typing and discrimination, hydraulic flow units, and production data is essential to analyze reasons and mechanisms of water injection failure in the injection wells. Water injection failure was reported in the Middle Miocene Hammam Faraun reservoir at El Morgan oil field in the Gulf of Suez, where two wells have been selected as injector’s wells. In the first well (A1), the efficiency of injection was not good, whereas in the other analog A2 well good efficiency was assigned. Therefore, it is required to assess the injection loss in the low efficiency well, where all aspects of the geological, reservoir and production data of the studied wells were integrated to get a complete vision for the reasons of injection failure. The available data include core analysis data (vertical and horizontal permeabilities, helium porosity, bulk density, and water and oil saturations), petrographical studies injection and reservoir water chemistry, reservoir geology, production, and injection history. The quality of the data was examined and a set of reliable X–Y plots between the available data were introduced and the reservoir quality in both wells was estimated using reservoir quality index, normalized porosity index, and flow zone indicator. Integration and processing of the core and reservoir engineering data indicate that heterogeneity of the studied sequence was the main reason for the waterflooding inefficiency at the El Morgan A1 well. The best reservoir quality was assigned to the topmost part of the reservoir, which caused disturbance of the flow regime of reservoir fluids. Therefore, it is clearly indicated that rock typing and inadequate injection perforation strategy that has not been aligned with accurate hydraulic flow units are the key control parameters in the waterflooding efficiency.

Author(s):  
Abdel Moktader A. El-Sayed ◽  
Nahla A. El Sayed ◽  
Hadeer A. Ali ◽  
Mohamed A. Kassab ◽  
Salah M. Abdel-Wahab ◽  
...  

AbstractThe present work describes and evaluates the reservoir quality of the sandstone of the Nubia Formation at the Gebel Abu Hasswa outcrop in southwest Sinai, Egypt. Hydraulic flow unit (HFU) and electrical flow unit (EFU) concepts are implied to achieve this purpose. The Paleozoic section made up of four formations has been studied. The oldest is Araba Formation followed by Naqus formations (Nubia C and D) overlay by Abu Durba, Ahemir and Qiseib formations (Nubia B), where the Lower Cretaceous (Nubia A) is represented by the Malha Formation. The studied samples have been collected from Araba, Abu Durba, Ahemir and the Malha formations. The hydraulic flow unit (HFU) discrimination was carried out based on permeability and porosity relationship, whereas the electrical flow unit (EFU) differentiation was carried out based on the relationship between formation resistivity factor and porosity. Petrographic investigation of the studied thin sections illustrates that the studied samples are mainly quartz arenite. Important roles to enhance or reduce the pore size and/or pore throats controlling the reservoir petrophysical behavior are due to the diagenetic processes. The present study used the reservoir quality index (RQI) and Winland R35 as additional parameters applied to discriminate the HFUs. The study samples have five hydraulic flow units of different rock types, where the detected electrical flow units are only three. The differences between them are may be due to the cementation process with iron oxides that might act as pore filling, lining and pore bridging, sometimes bridges helping to decrease permeability without serious reduction in porosity. The reduction between the number of EFUs and HFUs comes from the effect of diagenesis processes which is responsible for a precipitation of different cement types such as different clay minerals and iron oxides.


2004 ◽  
Author(s):  
Dmitry Svirsky ◽  
Andrey Ryazanov ◽  
Michael Pankov ◽  
Patrick W.M. Corbett ◽  
Andrey Posysoev

2021 ◽  
Author(s):  
Vil Syrtlanov ◽  
Yury Golovatskiy ◽  
Ivan Ishimov

Abstract In this paper the simplified way is proposed for predicting the dynamics of liquid production and estimating the parameters of the oil reservoir using diagnostic curves, which are a generalization of analytical approaches, partially compared with the results of calculations on 3D simulation models and with actual well production data.


2021 ◽  
Author(s):  
Umid Kakemem ◽  
Mohammadfarid Ghasemi ◽  
Arman Jafarian ◽  
Ayoub Mahmoudi ◽  
Kresten Anderskouv

Sign in / Sign up

Export Citation Format

Share Document