Effects of leucine-enkephalin on potassium currents in neurons in the rat respiratory center in vitro

2007 ◽  
Vol 37 (7) ◽  
pp. 739-746 ◽  
Author(s):  
A. N. Inyushkin
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Parveen Bazard ◽  
Bo Ding ◽  
Harish K. Chittam ◽  
Xiaoxia Zhu ◽  
Thomas A. Parks ◽  
...  

Abstract Na+–K+–2Cl− Cotransporter (NKCC1) is a protein that aids in the active transport of sodium, potassium, and chloride ions across cell membranes. It has been shown that long-term systemic treatment with aldosterone (ALD) can enhance NKCC1 protein expression and activity in the aging cochlea resulting in improved hearing. In the present work, we used a cell line with confirmed NKCC1 expression to demonstrate that in vitro application of ALD increased outward voltage-gated potassium currents significantly, and simultaneously upregulated whole lysate and membrane portion NKCC1 protein expression. These ALD-induced changes were blocked by applying the mineralocorticoid receptor antagonist eplerenone. However, application of the NKCC1 inhibitor bumetanide or the potassium channel antagonist Tetraethyl ammonium had no effect. In addition, NKKC1 mRNA levels remained stable, indicating that ALD modulates NKCC1 protein expression via the activation of mineralocorticoid receptors and post-transcriptional modifications. Further, in vitro electrophysiology experiments, with ALD in the presence of NKCC1, K+ channel and mineralocorticoid receptor inhibitors, revealed interactions between NKCC1 and outward K+ channels, mediated by a mineralocorticoid receptor-ALD complex. These results provide evidence of the therapeutic potential of ALD for the prevention/treatment of inner ear disorders such as age-related hearing loss.


1998 ◽  
Vol 79 (2) ◽  
pp. 1108-1112 ◽  
Author(s):  
Scott C. Baraban ◽  
Philip A. Schwartzkroin

Baraban, Scott C. and Philip A. Schwartzkroin. Effects of hyposmolar solutions on membrane currents of hippocampal interneurons and mossy cells in vitro. J. Neurophysiol. 79: 1108–1112, 1998. Whole cell voltage-clamp recordings in rat hippocampal slices were used to investigate the effect of changes in extracellular osmolarity on voltage-activated potassium currents. Currents were evoked from oriens/alveus (O/A) interneurons, hilar interneurons, and mossy cells. Hyposmolar external solutions produced a significant potentiation of K+ current recorded from O/A and hilar interneurons, but not from mossy cells. Hyposmolar solutions also dramatically potentiated the spontaneous excitatory postsynaptic currents recorded from mossy cells. These results suggest that hippocampal excitability can be modulated by the complex actions exerted by changes in extracellular osmolarity.


1985 ◽  
Vol 333 (2) ◽  
pp. 336-339 ◽  
Author(s):  
Yoshio Harada ◽  
Yong Zheng Wang ◽  
Motoy Kuno

Toxicon ◽  
2003 ◽  
Vol 42 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Ming-Hua Li ◽  
Nai-Xia Zhang ◽  
Xue-Qin Chen ◽  
Gong Wu ◽  
Hou-Ming Wu ◽  
...  

1978 ◽  
Vol 75 (7) ◽  
pp. 3503-3506 ◽  
Author(s):  
A. Bayon ◽  
J. Rossier ◽  
A. Mauss ◽  
F. E. Bloom ◽  
L. L. Iversen ◽  
...  

2011 ◽  
Vol 31 (9) ◽  
pp. 1823-1835 ◽  
Author(s):  
Ping Deng ◽  
Zhi-Ping Pang ◽  
Zhigang Lei ◽  
Sojin Shikano ◽  
Qiaojie Xiong ◽  
...  

Excitotoxicity is the major cause of many neurologic disorders including stroke. Potassium currents modulate neuronal excitability and therefore influence the pathological process. A-type potassium current ( IA) is one of the major voltage-dependent potassium currents, yet its roles in excitotoxic cell death are not well understood. We report that, following ischemic insults, the IA increases significantly in large aspiny (LA) neurons but not medium spiny (MS) neurons in the striatum, which correlates with the higher resistance of LA neurons to ischemia. Activation of protein kinase Cα increases IA in LA neurons after ischemia. Cultured neurons from transgenic mice lacking both Kv1.4 and Kv4.2 subunits exhibit an increased vulnerability to ischemic insults. Increase of IA by recombinant expression of Kv1.4 or Kv4.2 is sufficient in improving the survival of MS neurons against ischemic insults both in vitro and in vivo. These results, taken together, provide compelling evidence for a protective role of IA against ischemia.


Sign in / Sign up

Export Citation Format

Share Document