Epidermal growth factor induces matrix metalloproteinase-1 (MMP-1) expression and invasion in glioma cell lines via the MAPK pathway

2011 ◽  
Vol 104 (3) ◽  
pp. 679-687 ◽  
Author(s):  
M. Anand ◽  
T. E. Van Meter ◽  
H. L. Fillmore
1990 ◽  
Vol 73 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Ian F. Pollack ◽  
Margaret S. Randall ◽  
Matthew P. Kristofik ◽  
Robert H. Kelly ◽  
Robert G. Selker ◽  
...  

✓ The use of a serum-free culture system for assessing the growth factor responsiveness of malignant glial cells is described. The mitogenic properties of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) were examined in three human malignant glioma cell lines (T98G, U87, and U138). Each of the three had high-affinity EGF receptors and all responded in a dose-dependent fashion to physiological concentrations of EGF. These cell lines also showed a pronounced mitogenic response to PDGF which equaled or exceeded that achieved with EGF. Simultaneous stimulation with both factors produced an additive response, which approximated that obtained in medium supplemented with 10% fetal calf serum. The authors conclude that functional EGF and PDGF receptors were present in the human malignant glial tumors studied. The response of the human glioma lines to these growth factors in many respects parallels the response seen in fetal astrocytes tested under similar conditions. In contrast, the behavior of two chemically induced rat gliomas (9L and C6) differed significantly from that seen in the human lines, suggesting that the rat lines may not be entirely acceptable as models for studying the growth characteristics of human malignant glial tumors.


1993 ◽  
Vol 4 (1) ◽  
pp. 121-133 ◽  
Author(s):  
C K Goldman ◽  
J Kim ◽  
W L Wong ◽  
V King ◽  
T Brock ◽  
...  

Hypervascularity, focal necrosis, persistent cerebral edema, and rapid cellular proliferation are key histopathologic features of glioblastoma multiforme (GBM), the most common and malignant of human brain tumors. By immunoperoxidase and immunofluorescence, we definitively have demonstrated the presence of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFr) in five out of five human glioma cell lines (U-251MG, U-105MG, D-65MG, D-54MG, and CH-235MG) and in eight human GBM tumor surgical specimens. In vitro experiments with glioma cell lines revealed a consistent and reliable relation between EGFr activation and VEGF production; namely, EGF (1-20 ng/ml) stimulation of glioma cells resulted in a 25-125% increase in secretion of bioactive VEGF. Conditioned media (CM) prepared from EGF-stimulated glioma cell lines produced significant increases in cytosolic free intracellular concentrations of Ca2+ ([Ca2+]i) in human umbilical vein endothelial cells (HUVECs). Neither EGF alone or CM from glioma cultures prepared in the absence of EGF induced [Ca2+]i increases in HUVECs. Preincubation of glioma CM with A4.6.1, a monoclonal antibody to VEGF, completely abolished VEGF-mediated [Ca2+]i transients in HUVECs. Likewise, induction by glioma-derived CM of von Willebrand factor release from HUVECs was completely blocked by A4.6.1 pretreatment. These observations provide a key link in understanding the basic cellular pathophysiology of GBM tumor angiogenesis, increased vascular permeability, and cellular proliferation. Specifically, EGF activation of EGFr expressed on glioma cells leads to enhanced secretion of VEGF by glioma cells. VEGF released by glioma cells in situ most likely accounts for pathognomonic histopathologic and clinical features of GBM tumors in patients, including striking tumor angiogenesis, increased cerebral edema and hypercoagulability manifesting as focal tumor necrosis, deep vein thrombosis, or pulmonary embolism.


Sign in / Sign up

Export Citation Format

Share Document