Estimation of rainfall threshold for the early warning of shallow landslides along National Highway-10 in Darjeeling Himalayas

2020 ◽  
Author(s):  
Prodip Mandal ◽  
Shraban Sarkar
2015 ◽  
Vol 3 (5) ◽  
pp. 3487-3508
Author(s):  
J. Huang ◽  
N. P. Ju ◽  
Y. J. Liao ◽  
D. D. Liu

Abstract. Rainfall-induced landslides not only cause property loss, but also kill and injure large numbers of people every year in mountainous areas in China. These losses and casualties may be avoided to some extent with rainfall threshold values used in an early warning system at a regional scale for the occurrence of landslides. However, the limited availability of data always causes difficulties. In this paper we present a method to calculate rainfall threshold values with limited data sets for the two rainfall parameters: maximum hourly rainfall intensity and accumulated precipitation. The method has been applied to the Huangshan region, in Anhui Province, China. Four early warning levels (Zero, Outlook, Attention, and Warning) have been adopted and the corresponding rainfall threshold values have been defined by probability lines. A validation procedure showed that this method can significantly enhance the effectiveness of a warning system, and finally reduce the risk from shallow landslides in mountainous regions.


2018 ◽  
Vol 9 (6) ◽  
pp. 1871-1882 ◽  
Author(s):  
Shruti Naidu ◽  
K.S. Sajinkumar ◽  
Thomas Oommen ◽  
V.J. Anuja ◽  
Rinu A. Samuel ◽  
...  

2015 ◽  
Vol 15 (12) ◽  
pp. 2715-2723 ◽  
Author(s):  
J. Huang ◽  
N. P. Ju ◽  
Y. J. Liao ◽  
D. D. Liu

Abstract. Rainfall-induced landslides not only cause property loss, but also kill and injure large numbers of people every year in mountainous areas in China. These losses and casualties may be avoided to some extent with rainfall threshold values used in an early warning system at a regional scale for the occurrence of landslides. However, the limited availability of data always causes difficulties. In this paper we present a method to calculate rainfall threshold values with limited data sets for two rainfall parameters: hourly rainfall intensity and accumulated precipitation. The method has been applied to the Huangshan region, in the province of Anhui, China. Four early warning levels (zero, outlook, attention, and warning) have been adopted and the corresponding rainfall threshold values have been defined by probability lines. A validation procedure showed that this method can significantly enhance the effectiveness of a warning system, and finally reduce and mitigate the risk of shallow landslides in mountainous regions.


Landslides ◽  
2018 ◽  
Vol 16 (2) ◽  
pp. 235-251 ◽  
Author(s):  
Davide Tiranti ◽  
Gabriele Nicolò ◽  
Armando Riccardo Gaeta

2021 ◽  
Author(s):  
Paolo Frattini ◽  
Gianluca Sala ◽  
Camilla Lanfranconi ◽  
Giulia Rusconi ◽  
Giovanni Crosta

<p>Rainfall is one of the most significant triggering factors for shallow landslides. The early warning for such phenomena requires the definition of a threshold based on a critical rainfall condition that may lead to diffuse landsliding. The developing of these thresholds is frequently done through empirical or statistical approaches that aim at identifying thresholds between rainfall events that triggered or non-triggered landslides. Such approaches present several problems related to the identification of the exact amount of rainfall that triggered landslides, the local geo-environmental conditions at the landslide site, and the minimum rainfall amount used to define the non-triggering events. Furthermore, these thresholds lead to misclassifications (false negative or false positive) that always induce costs for the society. The aim of this research is to address these limitations, accounting for classification costs in order to select the optimal thresholds for landslide risk management.</p><p>Starting from a database of shallow landslides occurred during five regional-scale rainfall events in the Italian Central Alps, we extracted the triggering rainfall intensities by adjusting rain gouge data with weather radar data. This adjustment significantly improved the information regarding the rainfall intensity at the landslide site and, although an uncertainty related to the exact timing of occurrence has still remained. Therefore, we identified the rainfall thresholds through the Receiver Operating Characteristic (ROC) approach, by identifying the optimal rainfall intensity that separates triggering and non-triggering events. To evaluate the effect related to the application of different minimum rainfall for non-triggering events, we have adopted three different values obtaining similar results, thus demonstrating that the ROC approach is not sensitive to the choice of the minimum rainfall threshold. In order to include the effect of misclassification costs we have developed cost-sensitive rainfall threshold curves by using cost-curve approach (Drummond and Holte 2000). As far as we know, this is the first attempt to build a cost-sensitive rainfall threshold for landslides that allows to explicitly account for misclassification costs. For the development of the cost-sensitive threshold curve, we had to define a reference cost scenario in which we have quantified several cost items for both missed alarms and false alarms. By using this scenario, the cost-sensitive rainfall threshold results to be lower than the ROC threshold to minimize the missed alarms, the costs of which are seven times greater than the false alarm costs. Since the misclassification costs could vary according to different socio-economic contexts and emergency organization, we developed different extreme scenarios to evaluate the sensitivity of misclassification costs on the rainfall thresholds. In the scenario with maximum false-alarm cost and minimum missed-alarm cost, the rainfall threshold increases in order to minimize the false alarms. Conversely, the rainfall thresholds decreases in the scenario with minimum false-alarm cost and maximum missed-alarm costs. We found that the range of variation between the curves of these extreme scenarios is as much as half an order of magnitude.</p>


2013 ◽  
pp. 767-772 ◽  
Author(s):  
Giovanna Capparelli ◽  
Massimiliano Giorgio ◽  
Roberto Greco

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1195 ◽  
Author(s):  
Minu Treesa Abraham ◽  
Neelima Satyam ◽  
Sai Kushal ◽  
Ascanio Rosi ◽  
Biswajeet Pradhan ◽  
...  

Rainfall-induced landslides are among the most devastating natural disasters in hilly terrains and the reduction of the related risk has become paramount for public authorities. Between the several possible approaches, one of the most used is the development of early warning systems, so as the population can be rapidly warned, and the loss related to landslide can be reduced. Early warning systems which can forecast such disasters must hence be developed for zones which are susceptible to landslides, and have to be based on reliable scientific bases such as the SIGMA (sistema integrato gestione monitoraggio allerta—integrated system for management, monitoring and alerting) model, which is used in the regional landslide warning system developed for Emilia Romagna in Italy. The model uses statistical distribution of cumulative rainfall values as input and rainfall thresholds are defined as multiples of standard deviation. In this paper, the SIGMA model has been applied to the Kalimpong town in the Darjeeling Himalayas, which is among the regions most affected by landslides. The objectives of the study is twofold: (i) the definition of local rainfall thresholds for landslide occurrences in the Kalimpong region; (ii) testing the applicability of the SIGMA model in a physical setting completely different from one of the areas where it was first conceived and developed. To achieve these purposes, a calibration dataset of daily rainfall and landslides from 2010 to 2015 has been used; the results have then been validated using 2016 and 2017 data, which represent an independent dataset from the calibration one. The validation showed that the model correctly predicted all the reported landslide events in the region. Statistically, the SIGMA model for Kalimpong town is found to have 92% efficiency with a likelihood ratio of 11.28. This performance was deemed satisfactory, thus SIGMA can be integrated with rainfall forecasting and can be used to develop a landslide early warning system.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 133 ◽  
Author(s):  
Fabio Luino ◽  
Jerome De Graff ◽  
Anna Roccati ◽  
Marcella Biddoccu ◽  
Chiara Giorgia Cirio ◽  
...  

Identifying the minimum rainfall thresholds necessary for landslides triggering is essential to landslide risk assessment. The Italian Alps have always been affected by shallow landslides and mud-debris flows, which caused considerable damage to property and, sometimes, casualties. We analysed information provided from different sources carrying on the most thorough research conducted for this alpine area. Thousands of documents and reports of rainfall values recorded over 80 years by rain gauges distributed in Sondrio and Brescia Provinces define the mean annual precipitation (MAP)-normalized intensity–duration thresholds for the initiation of shallow landslides and mud-debris flows. The established curves are generally lower compared to those proposed in literature for similar mountain areas in Italy and worldwide. Furthermore, we found that landslides occurred primarily at the same time or within 3 h from the maximum peak of rainfall intensity in summer events and in a period from 0 to 5 h or later in spring-autumn events. The paper provides a further contribution to the knowledge framework on the rainfall conditions required for the initiation of surficial landslides and mud-debris flows and their expected timing of occurrence. This knowledge is crucial to develop better warning strategies to mitigate geo-hydrological risk and reduce the socio-economic damage.


Sign in / Sign up

Export Citation Format

Share Document