Inverse dynamics analysis of a general spherical star-triangle parallel manipulator using principle of virtual work

2010 ◽  
Vol 61 (3) ◽  
pp. 419-434 ◽  
Author(s):  
Javad Enferadi ◽  
Alireza Akbarzadeh Tootoonchi
Robotica ◽  
2014 ◽  
Vol 34 (3) ◽  
pp. 687-702 ◽  
Author(s):  
Bo Hu ◽  
Jingjing Yu ◽  
Yi Lu

SUMMARYThe inverse dynamics model of a novel (3-UPU)+(3-UPS+S) serial–parallel manipulator (S-PM) formed by a 3-UPU PM and a 3-UPS+S PM connected in serial is studied in this paper. First, the inverse position, velocity, and acceleration of this S-PM are studied systematically. Second, the velocity mapping relations between each component and the terminal platform of (3-UPU)+(3-UPS+S) S-PM are derived. Third, the dynamics model of the whole (3-UPU)+(3-UPS+S) S-PM is established by means of the principle of virtual work. The process for establishing the dynamics model of this S-PM is fit for other S-PMs.


2013 ◽  
Vol 455 ◽  
pp. 360-365
Author(s):  
Yong Gang Li ◽  
Li Xin Xu ◽  
Hui Wang

Dynamics formulation is a primary task for dynamic optimization, control strategy design and servomotor parameters estimation of the parallel manipulator (PM). In this paper, by using the simple operation form of reciprocal screw and Lie Algebra, the compact expressions of complete Jacobian and Hessian matrix are derived. Then the inverse dynamics of 3PRS parallel manipulator is formulated based on the efficient principle of virtual work. In this model, the generalized forces of both actuation and constraint can be solved. Finally, a numerical simulation example is given to demonstrate this simple yet effective approach.


Robotica ◽  
2009 ◽  
Vol 27 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Yongjie Zhao ◽  
Feng Gao

SUMMARYIn this paper, the inverse dynamics of the 6-dof out-parallel manipulator is formulated by means of the principle of virtual work and the concept of link Jacobian matrices. The dynamical equations of motion include the rotation inertia of motor–coupler–screw and the term caused by the external force and moment exerted at the moving platform. The approach described here leads to efficient algorithms since the constraint forces and moments of the robot system have been eliminated from the equations of motion and there is no differential equation for the whole procedure. Numerical simulation for the inverse dynamics of a 6-dof out-parallel manipulator is illustrated. The whole actuating torques and the torques caused by gravity, velocity, acceleration, moving platform, strut, carriage, and the rotation inertia of the lead screw, motor rotor and coupler have been computed.


Author(s):  
Lung-Wen Tsai

Abstract This paper presents a systematic methodology for solving the inverse dynamics of parallel manipulators. Based on the principle of virtual work and the concept of link Jacobian matrices, a methodology for deriving the dynamical equations of motion is developed. It is shown that the dynamics of a parallel manipulator can be reduced to solving a system of six linear equations. To demonstrate the methodology, the dynamical equations of a Stewart-Gough platform are derived. A computer algorithm is developed and several different trajectories of the moving platform are simulated.


Robotica ◽  
2016 ◽  
Vol 35 (10) ◽  
pp. 2018-2035 ◽  
Author(s):  
Wang Liping ◽  
Xu Huayang ◽  
Guan Liwen

SUMMARYThe modules of parallel tool heads with 2R1T degrees of freedom (DOFs), i.e., two rotational DOFs and one translational DOF, have become so important in the field of machine tools that corresponding research studies have attracted extensive attention from both academia and industry. A 3-PUU (P represents a prismatic joint, U represents a universal joint) parallel mechanism with 2R1T DOFs is proposed in this paper, and a detailed discussion about its architecture, geometrical constraints, and mobility characteristics is presented. Furthermore, on the basis of its special geometrical constraint, we derive and explicitly express the parasitic motion of the 3-PUU mechanism. Then, the inverse kinematics problem, the Jacobian matrix calculation and the forward kinematics problem are also investigated. Finally, with a simplified dynamics model, the inverse dynamics analysis for the mechanism is carried out with the Principle of Virtual Work, and corresponding results are compared with that of the 3-PRS mechanism. The above analyses illustrate that the 3-PUU parallel mechanism has good dynamics features, which validates the feasibility of applying this mechanism as a tool head module.


2000 ◽  
Vol 122 (4) ◽  
pp. 437-445 ◽  
Author(s):  
Behzad Dariush ◽  
Hooshang Hemami ◽  
Mohamad Parnianpour

Joint moment estimation using the traditional inverse dynamics analysis presents two challenging problems, which limit its reliability. First, the quality of the computed moments depends directly on unreliable estimates of the segment accelerations obtained numerically by differentiating noisy marker measurements. Second, the representation of joint moments from combined video and force plate measurements belongs to a class of ill-posed problems, which does not possess a unique solution. This paper presents a well-posed representation derived from an embedded constraint equation. The proposed method, referred to as the embedded constraint representation (ECR), provides unique moment estimates, which satisfy all measurement constraints and boundary conditions and require fewer acceleration components than the traditional inverse dynamics method. Specifically, for an n-segment open chain planar system, the ECR requires n−3 acceleration components as compared to 3n−1 components required by the traditional (from ground up) inverse dynamics analysis. Based on a simulated experiment using a simple three-segment model, the precision of the ECR is evaluated at different noise levels and compared to the traditional inverse dynamics technique. At the lowest noise levels, the inverse dynamics method is up to 50 percent more accurate while at the highest noise levels the ECR method is up to 100 percent more accurate. The ECR results over the entire range of noise levels reveals an average improvement on the order 20 percent in estimating the moments distal to the force plate and no significant improvement in estimating moments proximal to the force plate. The new method is particularly advantageous in a combined video, force plate, and accelerometery sensing strategy. [S0148-0731(00)01904-X]


Sign in / Sign up

Export Citation Format

Share Document