Stability analysis and estimation of domain of attraction for the endemic equilibrium of an SEIQ epidemic model

2016 ◽  
Vol 87 (2) ◽  
pp. 975-985 ◽  
Author(s):  
Xiangyong Chen ◽  
Jinde Cao ◽  
Ju H. Park ◽  
Jianlong Qiu
Mathematics ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 147 ◽  
Author(s):  
Toshikazu Kuniya

In this paper, we are concerned with the asymptotic stability of the nontrivial endemic equilibrium of an age-structured susceptible-infective-recovered (SIR) epidemic model. For a special form of the disease transmission function, we perform the reduction of the model into a four-dimensional system of ordinary differential equations (ODEs). We show that the unique endemic equilibrium of the reduced system exists if the basic reproduction number for the original system is greater than unity. Furthermore, we perform the stability analysis of the endemic equilibrium and obtain a fourth-order characteristic equation. By using the Routh–Hurwitz criterion, we numerically show that the endemic equilibrium is asymptotically stable in some epidemiologically relevant parameter settings.


CAUCHY ◽  
2017 ◽  
Vol 5 (1) ◽  
pp. 20
Author(s):  
Joko Harianto

In this paper, we present an SVIR epidemic model with deadly deseases. Initially the basic formulation of the model is presented. Two equilibrium point exists for the system; disease free and endemic equilibrium. The local stability of the disease free and endemic equilibrium exists when the basic reproduction number less or greater than unity, respectively. If the value of R0 less than one then the desease free equilibrium is locally stable, and if its exceeds, the endemic equilibrium is locally stable. The numerical results are presented for illustration.


2011 ◽  
Vol 81 (9) ◽  
pp. 1697-1706 ◽  
Author(s):  
Zhonghua Zhang ◽  
Jianhua Wu ◽  
Yaohong Suo ◽  
Xinyu Song

2020 ◽  
Vol 53 (2) ◽  
pp. 2576-2581
Author(s):  
Fangzhou Liu ◽  
Shaoxuan CUI ◽  
Xianwei Li ◽  
Martin Buss

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yakui Xue ◽  
Tiantian Li

We study a delayed SIR epidemic model and get the threshold value which determines the global dynamics and outcome of the disease. First of all, for anyτ, we show that the disease-free equilibrium is globally asymptotically stable; whenR0<1, the disease will die out. Directly afterwards, we prove that the endemic equilibrium is locally asymptotically stable for anyτ=0; whenR0>1, the disease will persist. However, for anyτ≠0, the existence conditions for Hopf bifurcations at the endemic equilibrium are obtained. Besides, we compare the delayed SIR epidemic model with nonlinear incidence rate to the one with bilinear incidence rate. At last, numerical simulations are performed to illustrate and verify the conclusions.


2021 ◽  
pp. 1-12
Author(s):  
LIU YANG ◽  
YUKIHIKO NAKATA

For some diseases, it is recognized that immunity acquired by natural infection and vaccination subsequently wanes. As such, immunity provides temporal protection to recovered individuals from an infection. An immune period is extended owing to boosting of immunity by asymptomatic re-exposure to an infection. An individual’s immune status plays an important role in the spread of infectious diseases at the population level. We study an age-dependent epidemic model formulated as a nonlinear version of the Aron epidemic model, which incorporates boosting of immunity by a system of delay equations and study the existence of an endemic equilibrium to observe whether boosting of immunity changes the qualitative property of the existence of the equilibrium. We establish a sufficient condition related to the strength of disease transmission from subclinical and clinical infective populations, for the unique existence of an endemic equilibrium.


2014 ◽  
Vol 46 (01) ◽  
pp. 241-255 ◽  
Author(s):  
Peter Neal

We study the endemic behaviour of a homogeneously mixing SIS epidemic in a population of size N with a general infectious period, Q, by introducing a novel subcritical branching process with immigration approximation. This provides a simple but useful approximation of the quasistationary distribution of the SIS epidemic for finite N and the asymptotic Gaussian limit for the endemic equilibrium as N → ∞. A surprising observation is that the quasistationary distribution of the SIS epidemic model depends on Q only through


Sign in / Sign up

Export Citation Format

Share Document