Secure communication in wireless sensor networks based on chaos synchronization using adaptive sliding mode control

2017 ◽  
Vol 89 (3) ◽  
pp. 1689-1704 ◽  
Author(s):  
Behrouz Vaseghi ◽  
Mohammad Ali Pourmina ◽  
Saleh Mobayen
2011 ◽  
Vol 12 (6) ◽  
pp. 3199-3206 ◽  
Author(s):  
Yan-Qiu Che ◽  
Jiang Wang ◽  
Shi-Gang Cui ◽  
Bin Deng ◽  
Xi-Le Wei ◽  
...  

2017 ◽  
Vol 40 (13) ◽  
pp. 3788-3799 ◽  
Author(s):  
Behrouz Vaseghi ◽  
Mohammad Ali Pourmina ◽  
Saleh Mobayen

This paper considers the finite-time chaos synchronization of Chua chaotic oscillators based on the secure communication scheme in wireless sensor networks. The modified Chua oscillators are added to the base station and sensor nodes to generate the chaotic signals. Two methods are proposed for the finite-time synchronization of the modified Chua systems with uncertain parameters. In the first method, by using the Lyapunov stability theory, control law is suggested to achieve finite-time chaos synchronization. In order to increase the robustness of the controller, in the second method, a sliding mode controller is applied to the wireless sensor network. Synchronization between the base station and each of the sensor nodes is realized by multiplying a selection matrix by the specified chaotic signal, which is broadcasted by the base station to the sensor nodes. The mathematical proofs confirm that the proposed control law is correct and finally, the simulation results are presented to show the efficiency of the proposed technique.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jiangbin Wang ◽  
Ling Liu ◽  
Chongxin Liu ◽  
Xiaoteng Li

The main purpose of the paper is to control chaotic oscillation in a complex seven-dimensional power system model. Firstly, in view that there are many assumptions in the design process of existing adaptive controllers, an adaptive sliding mode control scheme is proposed for the controlled system based on equivalence principle by combining fixed-time control and adaptive control with sliding mode control. The prominent advantage of the proposed adaptive sliding mode control scheme lies in that its design process breaks through many existing assumption conditions. Then, chaotic oscillation behavior of a seven-dimensional power system is analyzed by using bifurcation and phase diagrams, and the proposed strategy is adopted to control chaotic oscillation in the power system. Finally, the effectiveness and robustness of the designed adaptive sliding mode chaos controllers are verified by simulation.


Sign in / Sign up

Export Citation Format

Share Document